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Abstract 

An extended homogeneous balance method is suggested in this paper. Based on computerized symbolic computation and the homogeneous 
balance method, new exact traveling wave solutions of nonlinear partial differential equations (PDEs) are presented. The shallow-water 
equations represent a simple yet realistic set of equations typically found in atmospheric or ocean modeling applications, we consider the 
exact solutions of the nonlinear generalized shallow water equation and the fourth order Boussinesq equation. Applying this method, with 
the aid of Mathematica, many new exact traveling wave solutions are successfully obtained. 
© 2017 Shanghai Jiaotong University. Published by Elsevier B.V. 
This is an open access article under the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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1. Introduction 

The nonlinear equations are one of the most important
phenomena across the world. Nonlinear phenomena have
important effects on various fields of sciences, such as fluid
mechanics, plasma physics, optical fibers, solid state physics,
chemical kinematics, chemical physics and geochemistry.
Explicit solutions to the mathematical modeling of physical
problems are of fundamental importance. There are many
methods in literature to solve the nonlinear equations, such as
inverse scattering method [1,2] , bilinear transformation [1,3] ,
Hirota’s method [4] the tanh-function method [5,6] , extended
tanh method [7,8] , tanh-sech method [9] , Differential trans-
form method [10] , sine-cosine method [11] , Homotopy pertur-
bation method [12] , F-expansion method [13] , general expan-
sion method [14,15] , and ( G 

′ / G ) method [16–18] . The homo-
geneous balance (HB) method , which is a direct and effective
algebraic method for the computation of exact traveling wave
solutions, was first proposed by Wang [19,20] . Later [21,22] ,
HB method is extended to search for other kinds of exact
solutions not only the solitary one. Fan [23] used HB method
to search for Bäcklund transformation and similarity reduc-
tion of nonlinear PDEs. Also, he showed that there is a close
E-mail address: usama.ahmad@rub.de . 
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onnection among the HB method, Weiss, Tabor, Carnevale
WTC) method and Clarkson, Kruskal (CK) method. 

The shallow water equations (SWEs) are a system of
yperbolic PDEs describing fluid flow in the atmosphere,
ceans, rivers and channels. SWEs describe fluid-flow-
roblems in a thin layer of fluid of constant density in hydro-
tatic balance, bounded from below by the bottom topography
nd from above by a free surface and derived from the phys-
cal conservation laws for the mass and momentum. The
oussinesq equations can be considered as an extension to the

hallow water equations. Shallow water equations have been
odeled to tsunamis predictions, atmospheric flows, storm

urges, flows around structures (pier) and planetary flows. 
The aim of this paper is to extend the homogeneous

alance method to obtain more other kinds of exact solutions
o nonlinear PDEs. The validity of the method is tested by its
pplication to some nonlinear PDEs (The nonlinear general-
zed shallow water equation, and the fourth order Boussinesq
quation). The obtained solutions include rational, periodical,
ingular, shock wave and solitary wave solutions. 

In the following section, let us simply describe the
xtended homogeneous balance method. 

. Proposed analytical method 

In general, consider a given PDE, say in two variables 
 is an open access article under the CC BY-NC-ND license. 
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 (u, u t , u x , u xx , .... ) = 0. (1) 

e seek for the special solution of Eq. (1) , traveling wave
olution, in the form 

(x, t ) = u(ζ ) , ζ = x − λ t, (2) 

here ϑ and L are constants to be determined later. Using the
ransformation (2) , Eq. (1) reduces to a nonlinear ordinary
ifferential equation (ODE). The next crucial step is that the
olution we are looking for is expressed in the form 

(ζ ) = 

n ∑ 

i=0 

a i ω 

i + 

n ∑ 

i=1 

b i [ 1 + ω ] −i , (3) 

nd 

 

′ = k + M ω + P ω 

2 , (4) 

here a i and b i are constants, while k, M and P are parame-
ers to be determined latter, ω = ω(ζ ) , and ω 

′ = d ω/d ζ . The
echanism for solitary wave solutions to occur is the fact

hat different effects (such as, the dispersion and nonlinearity)
hat act to change the wave forms in many nonlinear physical
quations have to balance each other. Therefore, one may use
he above fact to determine the parameter n which, must be a
ositive integer, can be found by balancing the highest-order
inear term with the nonlinear terms. Substituting (3) and
4) in the relevant ODE will yield a system of ODEs with
espect to a 0 , a i , b i , k, M, P and λ (where i = 1 , . . . , m),
ecause all the coefficients of ω 

j (where j = 0, 1 , ... ) have to
anish. With the aid of MATHEMATICA, one can determine
 0 , a i , b i , k, M, P and λ. 

It is to be noted that the Riccati Eq. (4) can be solved
sing the homogeneous balance method as follows: 

Case I: when P = 1, M = 0, the Riccati Eq. (4) has the
ollowing solutions 

 = 

{−√ −k tanh [ 
√ −k ζ ] , with k < 0, 

−√ −k coth [ 
√ −k ζ ] , with k < 0, 

(5) 

 = − 1 

ζ
, with k = 0, (6) 

nd 

 = 

{√ 

k tan [ 
√ 

k ζ ] , with k > 0, 

−√ 

k cot [ 
√ 

k ζ ] , with k > 0. 
(7) 

ince coth- and cot-type solutions appear in pairs with tanh-
nd tan-type solutions, respectively, they are omitted in this
aper. 

Case II:, Let ω = 

∑ m 

i=0 A i tanh 

i ( p 1 ζ ) . Balancing ω 

′ with
 

2 leads to 

 = A 0 + A 1 tanh ( p 1 ζ ) (8) 

ubstituting Eq. (8) into (4) , we have the following solution
f Eq. (4) 

 = − p 1 

2P 

tanh 

( p 1 

2 

ζ
)

− M 

2P 

, with P k = 

M 

2 − p 

2 
1 

4 

(9) 
imilarly, let ω = 

∑ m 

i=0 A i coth 

i (p 1 ζ ) , then we obtain the
ollowing solution: 

 = − p 1 

2P 

coth 

( p 1 

2 

ζ
)

− M 

2P 

ith P k = 

M 

2 −p 2 1 
4 

Case III:, We suppose that the Riccati Eq. (4) have the
ollowing solutions of the form 

 = A 0 + 

m ∑ 

i=0 

(A i f 
i + B i f 

i−1 g) , (10) 

ith 

f = 

1 

cosh ζ + r 
, g = 

sinh ζ

cosh ζ + r 
, (11) 

ubstituting Eqs. (10) and (11) into (4) , we have the
ollowing solution of Eq. (4) 

 = − 1 

2P 

( 

M + 

sinh (ζ ) + 

√ 

r 2 − 1 

cosh (ζ ) + r 

) 

, with P k = 

M 

2 − 1 

4 

(12) 

here r is an arbitrary constant. It should be noticed that
olution (12) , as r = 1 , degenerates to 

 = − 1 

2P 

[
M + tanh 

(
ζ

2 

)]
(13) 

Case IV:, We suppose that the Riccati Eq. (4) has the
ollowing solutions of the form 

 = A 0 + 

m ∑ 

i=0 

sinh 

i−1 (A i sinh η + B i cosh η) , (14) 

here d η/d ζ = sinh η or d η/d ζ = cosh η Balancing ω 

′ with
 

2 leads to m = 1 

 = A 0 + A 1 sinh η + B 1 cosh η. (15) 

hen d η/d ζ = sinh η we substitute (15) and d η/d ζ = sinh η

nto (4) and set the coefficient of sinh 

i η cosh 

j η, i =
, 1 , 2, j = 0, 1 to zero and solve the obtained set of
lgebraic equations we get 

 0 = 

−M 

2P 

, A 1 = 0, B 1 = 

1 

P 

, (16) 

here k = 

M 

2 −4 
4P and 

 0 = 

−M 

2P 

, A 1 = ±
√ 

1 

2P 

, B 1 = 

1 

P 

, (17) 

here k = 

M 

2 −1 
4P . To d η/d ζ = sinh η we have 

inh η = −cschζ , cosh η = − coth ζ . (18) 

rom (16) - (18) we obtain 

 = −M + 2 coth ζ

2P 

. (19) 

here k = 

M 

2 −4 
4P , and 

 = −M ± csch ζ + coth ζ

2P 

. (20) 

here k = 

M 

2 −1 

4P 
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3. Applications of the propsed method 

In this section, we will illustrate the above approach for a
class of nonlinear evolution equations namely, The nonlinear
generalized shallow water equation and the fourth order
Boussinesq equation. 

3.1. Example 1. Shallow water equation 

The shallow water equations are a set of hyperbolic partial
differential equations that describe the flow below a pressure
surface in a fluid 

Let us first consider the nonlinear generalized shallow
water equation 

u x x x t + αu x u xt + βu t u xx − u xt − γ u xx = 0, (21)

where α, β, γ are constants. Applying the transformation
u(x, t ) = U (ζ ) , ζ = x − λt to Eq. (21) we find U satisfy the
following ordinary differential equation 

−γU 

′′ + λU 

′′ − αλU 

′ U 

′′ − βλU 

′ U 

′′ − λU 

(4) = 0 (22)

Integrating (22) with respect to ζ once, we get 

−1 

2 

(α + β) λU 

′ 2 + (λ − γ ) U 

′ − λU 

(3) = 0 (23)

Balancing U 

′ ′ ′ with U 

′ 2 yields | m 

| = 1 . Therefore, we are
looking for the solution in the form 

 = a 0 + b 0 + a 1 ω + b 1 (1 + ω) −1 . (24)

Substituting Eqs. (24) and (4) in Eq. (23) , we get a
polynomial equation ω. Hence, equating the coefficient of ω 

j 

(i.e., j = 0, 1 , 2, ... ) to zero and solving the obtained system
of overdetermined algebraic equation using symbolic manip-
ulation package MATHEMATICA, results in: The first set: 

a 1 = − 12P 

α + β
, P = 

M 

2 

, k = 

1 

12 

( 12P + αb 1 + βb 1 ) , α

+ β � = 0, 

b 1 = − 3 

4P (α + β) 
, λ � = 0. (25)

The second set: 

a 1 = 0, α + β � = 0, k = 

M 

2 − 1 

4P 

, 

P α � = 0, b 1 = 

12(k − M + P ) 

α + β
, P � = 0. (26)

Hence, for the first set we are left only with solutions
satisfying cases II and III and IV. Since, the main criteria for
these cases to be applicable is the compatibility condition, 

P k = 

M 

2 − p 

2 
1 

4 

. (27)

Therefore, substitute for P and k , from Eq. (25) into
Eq. (27) and solve for p 1 . It is found that 

p 1 = 2 

√ 

α

16(α + β) 
+ 

β

16(α + β) 
. (28)
Therefore, solution to shallow water equation of the type
21) , will be 

 1 (x, t ) = a 0 

 

3(4p 1 (M + 2 tanh ((x − λt ) p 1 )) + 

1 
p 1 (M+2 tanh ((x−λt ) p 1 )) −M 

) 

2(α + β) 
, 

(29)

nd 

 2 (x, t ) = a 0 

 

3(4(M + 2 coth ((x − λt ) p 1 )) p 1 + 

1 
(M+2 coth ((x−λt ) p 1 )) p 1 −M 

) 

2(α + β) 
, 

(30)

In the same manner case III, results in the solution 

 3 (x, t ) = a 0 + 

3(r + cosh (x − λt )) 

2(α + β)( sinh (x − λt ) + 

√ 

r 2 − 1 ) 

+ 

6(M + 

sinh (x−λt )+ 

√ 

r 2 −1 
r+ cosh (x−λt ) ) 

α + β
, (31)

ith the condition that p 1 = 1 , 

For case IV, the solution form is 

 4 (x, t ) = a 0 − 6(M + coth (x − λt ) + csch (x − λt )) 

α + β
+ a 0 

− 3 

2(α + β)(2M + coth (x − λt ) + csch (x − λt )) 
, 

(32)

ith the condition that p 1 = 1 . and 

 5 (x, t ) 

= 

4(α + β) a 0 + 3(8 M + 16 coth (x − λt ) + tanh ((x − λt )) 

4(α + β) 
,

(33

ith the condition that p 1 = 2. 
For the second set (26) , if M = 0, P = 1 we get the

olutions satisfying case I for k < 0. Therefore, the solution
f shallow water equation of the type (21) , will be 

 6 (x, t ) = a 0 − 12(k − M + P ) 

(α + β)( 
√ −k tanh ( 

√ −k (x − λt )) − 1) 
, (34)

 7 (x, t ) = a 0 − 12(k − M + P ) 

(α + β)( 
√ 

k coth ( 
√ 

k (x − λt )) − 1) 
, (35)

Now for the solutions satisfying cases II and III and IV,
e have the compatibility condition, 

 k = 

M 

2 − p 

2 
1 

4 

. (36)

herefore, substitute for P and k , from Eq. (26) into
q. (36) and solve for p 1 . It is found that 

p 1 = 2 

√ 

1 

4β
− k + 1 

4β
. (37)
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Hence, for case II, we get the following solutions: 

 8 (x, t ) = a 0 − 6((M − 2P ) 2 − 1) 

(α + β)(M − 2P + 2 tanh (x − λt )) 
, (38) 

nd 

 9 (x, t ) = a 0 −
6 

(
(M − 2P ) 2 − 1 

)
(α + β)(M − 2P + 2 coth (x − λt )) 

, (39) 

n the same manner case III, results in the solution 

 10 (x, t ) = a 0 + 

6 

α + β

( 

2P + 

√ −1 + r 2 

r + cosh [ x − tλ] 

) 

, (40) 

ith the condition that p 1 = 1 . 
For case IV, the solution form is 

 11 (x, t ) = a 0 

 

6(M 

2 − 4P M + 4P 

2 − 1) 

(α + β)(M + 2P + coth (x − λt ) + csch (x − λt )) 
, (41) 

ith the condition that p 1 = 1 . 

.2. Example 2. The Boussinesq equation 

Consider The fourth order Boussinesq equation. 

 tt − A 

2 u xx + B(u 

2 ) xx + u x x x x = 0, (42) 

here A and B are constants. Applying the transformation
(x, t ) = U (ζ ) , ζ = x − λt to Eq. (42) Then it is reduced to

he following ordinary differential equation: 

A 

2 U 

′′ + λ2 U 

′′ − B(2U 

′ 2 + 2U U 

′′ ) + U 

(4) = 0, (43) 

y integrating (33) with respect to ζ twice, we get 

(λ2 − A 

2 ) U − BU 

2 + U 

′′ = 0 (44) 

Balancing U 

′ ′ with U 

2 yields m = 2. Therefore, we are
ooking for the solution in the form 

 = a 0 + b 0 + a 1 ω + b 1 (1 + ω) −1 

+ a 2 ω 

2 + b 2 (1 + ω) −2 . (45) 

Substituting Eqs. (45) and (4) in Eq. (44) , we get a
olynomial equation ω. Hence, equating the coefficient of
 

j (i.e., j = 0, 1 , 2, ... ) to zero and solving the obtained
ystem of overdetermined algebraic equation using symbolic
anipulation package MATHEMATICA, results in two sets: 
The first set: 

 = 2P, B � = 0, a 0 = 

6(2kP − P 

2 ) 

B 

, a 1 = 

12P 

2 

B 

, 

 1 = 0, a 2 = 

a 1 

2 

, b 2 = 

6(k 2 − 2P k + P 

2 ) 

B 

, 

λ = 

√ 

A 

2 − 4P 

2 − 8 kP + 2Ba 0 , 

k = 

3 M 

2 + 2Ba 0 

12M 

, kP − P 

2 � = 0. (46) 

The second set: 

B � = 0, a 0 = 

M 

2 + 2kP 

B 

, a 1 = 

6 MP 

B 

, b 1 = 0, 
 2 = 

6 P 

2 

B 

, b 2 = 0, λ = 

√ 

A 

2 − M 

2 − 8 kP + 2Ba 0 , 

k = 

Ba 0 − M 

2 

2P 

, P � = 0. (47) 

For the first set, as in the previous example , we apply
he compatibility condition in using the solutions satisfying
ases II and III and IV. 

 k = 

M 

2 − p 

2 
1 

4 

. (48) 

herefore, substitute for P and k , from Eq. (46) , into
q. (48) and solve for p 1 . It is found that 

p 1 = 

√ 

3 M 

2 − 2Ba 0 √ 

6 

. (49) 

Therefore, solution to the equation of the type (42) , will
e 

 1 (x, t ) = a 0 + 

3 M 

2 (M − 2k) 2 

2B(M − p 1 (M + 2 tanh ((x − λt ) p 1 ))) 2 

+ 

3 p 

2 
1 (M + 2 tanh ((x − λt ) p 1 )) 

2 

2B 

− 3 M p 1 (M + 2 tanh ((x − λt ) p 1 )) 

B 

, (50) 

nd 

 2 (x, t ) = a 0 + 

3 M 

2 (M − 2k) 2 

2B ( M − ( M + 2 coth ( (x − λt ) p 1 ) ) p 1 ) 2 

+ 

3 ( M + 2 coth ( (x − λt ) p 1 ) ) 
2 p 

2 
1 

2B 

− 3 M ( M + 2 coth ( (x − λt ) p 1 ) ) p 1 

B 

, (51) 

In the same manner case III, results in the solution 

 3 (x, t ) = a 0 + 

3 M 

2 (M − 2k) 2 (r + cosh (x − λt )) 2 

2B 

(
sinh (x − λt ) + 

√ 

r 2 − 1 

)2 

+ 

3 

(
M + 

sinh (x−λt )+ 

√ 

r 2 −1 
r+ cosh (x−λt ) 

)2 

2B 

−
3 M 

(
M + 

sinh (x−λt )+ 

√ 

r 2 −1 
r+ cosh (x−λt ) 

)
B 

, (52) 

ith the condition that p 1 = 1 . 
For case IV, the solution form is 

 4 (x, t ) = a 0 + 

3 M 

2 (M − 2k) 2 

2B(2M + coth (x − λt ) + csch (x − λt )) 2 

+ 

3(M + coth (x − λt ) + csch (x − λt )) 2 

2B 

+ 

3 M(M + coth (x − λt ) + csch (x − λt )) 

B 

, (53) 

ith the condition that p 1 = 1 , and 

 5 (x, t ) 

 

8 Ba 0 + 3(((−2k) 2 tanh 2 (x − λt ) − 4) M 

2 + 16 coth 2 (x − λt )) 
, (54) 
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Fig. 1. Three-dimensional profile of the shock wave solution [given by Eq. 
(29)] for fixed values of a 0 = 0. 6 , P = 1 . 5 , α = 0. 1 , β = 0. 5 and λ = 0. 1 . 
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(40) ] for a 0 = 0. 6 , P = 1 . 5 , α = 0. 1 , β = 0. 5 , r = 3 . 2 and λ = 0. 1 . 
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with the condition that p 1 = 2. 
For the second set (47) , if M = 0, P = 1 we get the

solutions satisfying case I. Therefore, for k > 0, the solution
of Boussinesq equation of the type (42) , will be 

u 6 (x, t ) = a 0 + 

6 k tan 

2 ( 
√ 

k (x − λt )) 

B 

, (55)

and 

u 7 (x, t ) = a 0 + 

6 k cot 2 ( 
√ 

k (x − λt )) 

B 

, (56)

while for k < 0, 

u 8 (x, t ) = a 0 − 6 k tanh 

2 ( 
√ −k (x − λt )) 

B 

, (57)

u 9 (x, t ) = a 0 + 

6 k coth 

2 ( 
√ 

k (x − λt )) 

B 

. (58)

For k = 0, 

u 10 (x, t ) = a 0 + 

6 

Bζ 2 
. (59)

Now, for the solutions satisfying cases II and III and IV,
we have the compatibility condition, 

P k = 

M 

2 − p 

2 
1 

4 

. 

Therefore, substitute for P and k , from Eq. (47) , and solve
for p 1 . It is found that 

p 1 = 

√ 

3 M 

2 − 2Ba 0 . (60)

Therefore, solution to the equation of the type (42), will
be 

u 11 (x, t ) 

= 

2Ba 0 + 3 p 1 (M + 2 tanh ((x − λt ) p 1 ))(p 1 (M + 2 tanh ((x − λt ) p 1 )) − 2M) 

2B 

,

(61)

and 

u 12 (x, t ) 

= 

2Ba 0 + 3(M + 2 coth ((x − λt ) p 1 )) p 1 ((M + 2 coth ((x − λt ) p 1 )) p 1 − 2M) 

2B 

, 

(62)

In the same manner case III, results in the solution 

u 13 (x, t ) = a 0 

+ 

3( − cosh (x −λt )(2r + cosh (x −λt )) M 

2 −(M 

2 −1) r 2 + sinh 2 (x −λt ) + 2 
√ 

r 2 −1 sinh (x −λt ) −
2B(r + cosh (x −λt )) 2 

(63)

with the condition that p 1 = 1 . 
For case IV, the solution form is 

u 14 (x, t ) = a 0 + 

3(M + coth (x − λt ) + csch (x − λt )) 2 

2B 

+ 

3 M(M + coth (x − λt ) + csch (x − λt )) 

B 

, (64)
ith the condition that p 1 = 1 , and 

 15 (x, t ) = a 0 − 3(M 

2 − 4 coth 

2 (x − λt )) 

2B 

, (65)

ith the condition that p 1 = 2. 
In summary, the use of the extended homogeneous balance

ethod gives rise to many traveling wave solutions that were
ormally derived for the nonlinear generalized shallow water
quation and The fourth order Boussinesq equation. Some
f them are new and interesting solutions, For example, as
n solutions (29) , (31) and (40) cannot be recovered using
he tanh-method, the extended tanh method, and the ( G 

′ / G )
ethod. These solutions include many types like rational,

eriodical, singular and solitary wave solutions which is very
mportant to study the nonlinear properties of solitary waves.
s example, the solution (29) is a shock wave solution as
epicted in Fig. 1 . Solutions (40) , (57) are a bell-shaped
olitary wave solution and represent the soliton solution,
he profile of this solution is depicted in Fig. 2 . Solution
55) is a sinusoidal-type periodical solution. Sinusoidal-type
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Fig. 3. Three-dimensional profile of the periodic solution [given by Eq. (55) ] 
for a 0 = 3 . 1 , k = 0. 5 , λ = 0. 1 and B = 3 . 
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Fig. 4. Three-dimensional profile of the explosive/blowup pulse [given by 
Eq. (58) ] for the same parameters as in Fig. 3 . 
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eriodical solutions develop a singularity at a finite point, i.e.
or any fixed t = t 0 there exist an x 0 at which these solutions
low up , see Fig. 3 , while solutions (31) and (58) are explo-
ive/blowup solutions as depicted in Fig. 4 . and the solutions
n (59) is a rational-type solution. Rational solutions may be
elpful to explain certain physical phenomena. The solutions
re useful in physical aspects and applied mathematics. 

. Conclusions 

An extended homogeneous balance method with com-
uterized symbolic computation is developed to deal with
onlinear partial differential equations (PDEs). Traveling 

ave solutions were formally derived for the nonlinear
eneralized shallow water equation and The fourth order
oussinesq equation. This method can be also applied to
ther nonlinear evolution equations. 
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