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Abstract 

This work explores the construction of more general exact traveling wave solutions of some nonlinear evolution equations (NLEEs) 
through the application of the ( G 

′ / G , 1/ G )-expansion method. This method is allied to the widely used ( G 

′ / G )-method initiated by Wang et 
al. and can be considered as an extension of the ( G 

′ / G )-expansion method. For effectiveness, the method is applied to the family of KdV 

type equations. Abundant general form solitary wave solutions as well as periodic solutions are successfully obtained through this method. 
Moreover, in the obtained wider set of solutions, if we set special values of the parameters, some previously known solutions are revived. 
The approach of this method is simple and elegantly standard. Having been computerized it is also powerful, reliable and effective. 
© 2017 Shanghai Jiaotong University. Published by Elsevier B.V. 
This is an open access article under the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Nonlinearity exists inherently everywhere in the real world.
t remains in very near of our doorstep to any long range.
ny linear or nonlinear natural phenomenon always abides
y some scientific laws which are modeled by mathemati-
al formulations or expressions. When the attribute rates of
hange of a quantity or time evolution event gets involved,
hen it can be modeled by the linear or nonlinear ordinary
ifferential equations (ODE) or partial differential equations
PDE) or system of them. Most physical phenomena of fluid
ynamics, quantum mechanics, electricity, magnetism, prop-
gation of shallow water waves, plasma physics and many
ther models are governed within its domain of validity by
onlinear PDE. 

To analyze the underlying mechanism or the physical ef-
ects through the model problem, it is crucial to derive the so-
utions of the governing equations. Explicit solution provides
∗ Corresponding author. 
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mportant qualitative and quantitative information fundamen- 
ally in a direct way. Particularly, an analytical or closed form
olution gives insight the nature of the problem clearly. As
 result, research of finding exact solutions to nonlinear evo-
ution equations is one of the most vibrant areas of mathe-

atics, physics, chemistry, biology and so on. It has had a
road and far-reaching impact on myriad fields ranging from
he mathematical to physical science. 

There exists several approaches for finding exact traveling
ave solutions in the literature of nonlinear problems such

s the inverse scattering method [1] , the Hirota’s bilinear op-
rators [2] for solving the Cauchy problem in case of inte-
rable partial differential equations, the Backlund transforma-
ion [3] and the Wronskian determinant technique [4] and so
n. 

The above mentioned methods are improved by the assis-
ance of computer software and many other algebraic methods
re proposed e.g. the Jacobi elliptic function method [5] , the
eirestrass function method [6] , the homogeneous balance
ethod [7] , the theta function method [8] , the complex hy-

erbolic function method [9] , the exp-function method [10] ,
 is an open access article under the CC BY-NC-ND license. 
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the F-expansion method [11] , the sub-ODE method [12] , the
symmetry method [13] , the first integral method [14] , the trial
function method [15] , the nonlinear transform method [16] ,
the hyperbolic tangent method [17] , the Adomain decomposi-
tion method [18] , the sine–cosine method [19] , the tanh–coth
method [20] etc. 

In the recent years, the ( G 

′ / G )-expansion method, intro-
duced by Wang et al. [21] has been gained popularity to the
wider area of physical science and engineering for search-
ing different exact solutions of nonlinear evolution equations.
The significance of this method is that it handles nonlinear
problems by transforming into simple algebraic equations. It
has been demonstrated that the technique of this method is
simple and effective for seeking analytical solutions to non-
linear PDE. From that time, to improve as well as to enhance
the ( G 

′ / G )-expansion method, many works have been carried
out and many exact solutions have been successfully found
[22,23,24] . Zhang et al. [25] improved the method to deal
with nonlinear evolution equations with variable coefficients.
Chao and Yu-Bin [26] modified the method to derive traveling
wave solutions to the Whitham–Broer–Kaup like equations. A
remarkable work was also done by Zhang [27] , on some spe-
cial nonlinear evolution equations where the balance numbers
are not positive integers. 

In this article, we have suggested and implemented the two
variables ( G 

′ / G , 1/ G )-expansion method which is considered
as the generalization of the original ( G 

′ / G )-expansion method
to the celebrated and well known Korteweg de Vries (KdV)-
family type equations. These equations appear in many sci-
entific fields, for instance, model of surface waves with small
amplitude and long wavelength on shallow water. The KdV
equations represent the rate of change of the wave’s height in
time is governed by the sum of two terms: one is nonlinear
terms that have the amplitude effect and the other is disper-
sive terms that have effect on waves of different wavelengths
to travel with different velocities. 

Li et al. [28] are the pioneers of the two variables ( G 

′ / G ,
1/ G )-expansion method and they applied it to find exact
solutions to the Zakharov equation. Zayed and Abdelaziz
[29] also applied this method to the Zoomeron equation and
found useful solution successfully. Very recently, Demiray
et al. [30] have determined the exact solutions of the Boussi-
nesq type equations by using the ( G 

′ / G , 1/ G )-expansion
method effectively. Yet considerable work has to be done in
order to make the ( G 

′ / G , 1/ G )-expansion method well-set as
every nonlinear PDE has its own physically significant rich
shape. 

The main idea of this method is that the exact traveling
wave solutions of nonlinear PDEs can be expressed by a poly-
nomial in two variables ( G 

′ / G ) and (1/ G ), where G = G (ξ )

satisfies a second-order linear ordinary differential equation
(LODE), G 

′′ (ξ ) + λG (ξ ) = μ in which λ and μ are constants.
The degree of the polynomial can be determined by the ho-
mogeneous balance between the highest order derivatives and
nonlinear terms that appear in the given PDEs. Moreover, the
coefficients of this polynomial can be obtained by solving a
et of algebraic equations resulted from the process of this
ethod. 
The objective of this work is twofold: first, we present the

 G 

′ / G , 1/ G )-expansion method and the second is to implement
he method to obtain general solitary wave solutions to the
amily of KdV equations. 

. Outline of the ( G 

′ / G , 1/ G )-expansion method 

The principal ideas of the ( G 

′ / G , 1/ G )-expansion method
re presented in the following: 

First, we consider a linear ordinary differential equation
LODE) in G = G (ξ ) as 

 

′′ ( ξ ) + λG ( ξ ) = μ, (2.1)

here λ and μ are two arbitrary constants. 
Again, we consider two rational functions φ and ψ as 

= G 

′ /G , ψ = 1 /G , (2.2)

here G 

′ is the derivative of G . 
From Eqs. (2.1) and (2.2) , the following relations can be

erived easily 

′ = −φ2 + μψ − λ, ψ 

′ = −φψ. (2.3)

The general solutions of LODE (2.1) , depend on whether
he values of λ〈 0, λ〉 0 or λ = 0. 

ase 1 : When λ < 0, the general solution of LODE (2.1) is

G (ξ ) = A 1 sinh ( 
√ −λξ ) + A 2 cosh ( 

√ −λξ ) + 

μ

λ
, 

(2.4)

where A 1 and A 2 are two arbitrary constants. 
Now, from Eqs. (2.2) , (2.3) and (2.4) , the fol-
lowing relation can be deduced ψ 

2 = 

−λ
λ2 σ+ μ2 

( φ2 − 2μψ + λ) , where 

σ = A 

2 
1 − A 

2 
2 . (2.5)

ase 2 : When λ > 0, the general solution of (2.1) is the form
of trigonometric function as 

G (ξ ) = A 1 sin ( 
√ 

λξ ) + A 2 cos ( 
√ 

λξ ) + 

μ

λ
, (2.6)

where A 1 and A 2 are two arbitrary constants. 
On the other hand, from Eqs. (2.2) , (2.3) and (2.6) ,
the following relation can be derived ψ 

2 = 

λ
λ2 ρ−μ2 

( φ2 − 2μψ + λ) where 

ρ = A 

2 
1 + A 

2 
2 . (2.7)

ase 3 : Finally, when λ = 0, the general solution of LODE
is 

G ( ξ ) = 

μ

2 

ξ 2 + A 1 ξ + A 2 (2.8)

and in the same aforementioned way from Eqs. (2.2) ,
(2.3) and (2.8) the relationship between φ and ψ 

yields, 

ψ 

2 = 

λ

A 

2 
1 − 2μA 2 

( φ2 − 2μψ ) , (2.9)

where A and A are two arbitrary constants. 
1 2 
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Let us now consider general nonlinear evolution equations
f the form 

 (u, u t , u x , u tt , u xt , u xx , . . . ) = 0, (2.10)

here u = u(x, t ) is an unidentified function depends on two
ariables x and t . The function F is a polynomial in u ( x, t )
nd its various partial derivatives, involving nonlinear terms
nd the highest order derivative terms. The main procedures
o find the exact solutions of this type of nonlinear evolu-
ion equation by this extension method are in the following
tepwise: 

tep 1: Consider the traveling wave variable 

u(x, t ) = u(ξ ) , ξ = x − ct, (2.11)

where c is the speed of the traveling wave. Apply-
ing the chain rule of partial derivatives and substitut-
ing the values of u = u(x, t ) and its various partial
derivatives into Eq. (2.10) , it reduces to the following
ordinary differential equation (ODE): 

F (u, −cu 

′ , u 

′ , u 

′′ , −cu 

′′ , −c 2 u 

′′ , . . . ) = 0, (2.12)

where u 

′ = 

du 
dξ

, u 

′′ = 

d 2 u 
d ξ 2 , . . . and so on. 

tep 2: The ansatz of this extension method is that the solu-
tion of ODE (2.12) can be expressed by a polynomial
in φ = ( G 

′ /G ) and ψ = ( 1 /G ) as 

u(ξ ) = 

m ∑ 

i=0 

a i φ
i + 

m ∑ 

i=1 

b i φ
i−1 ψ , (2.13) 

where G satisfies the second order LODE (2.1) , a i (i =
0, 1 , 2, . . . , m) , b i (i = 0, 1 , 2, . . . , m) , λ, μ and c are
constants to be determined later. The degree m of the
polynomial can be determined by using the homoge-
neous balance between the highest order derivatives
and the nonlinear terms appearing in Eq. (2.12) . 

tep 3: Substituting the assumed solution u = u(ξ ) of
(2.13) into Eq. (2.12) , using (2.3) and (2.5) , the
left hand side of (2.12) becomes a polynomial in
φ and ψ , where the degree of ψ is not larger than
one. Equating each coefficient of the polynomial to
zero yields a system of algebraic equations in a i (i =
0, 1 , 2, . . . , m) , b i (i = 0, 1 , 2, . . . , m) , c, λ( λ < 0), μ,
A 1 and A 2 . 

tep 4: Solving the algebraic equations obtained in Step 3
with the help of any computer algebraic manipulat-
ing software, like Maple and substituting the values of
a i (i = 0, 1 , 2, . . . , m) , b i (i = 0, 1 , 2, . . . , m) , c, λ( λ
< 0), μ, A 1 and A 2 into Eq. (2.13) , we find the trav-
eling wave solutions of Eq. (2.10) in terms of hyper-
bolic functions. 

tep 5: Similarly, following the Step 3 and Step 4, sub-
stituting (2.13) , into Eq. (2.12) , using (2.3) and
(2.7) (or (2.3) and (2.9) ), we obtain the solutions of
Eq. (2.10) in terms of trigonometric functions (or by
rational functions). 
. Application of ( G 

′ / G , 1/ G )-expansion method to the 
amily of KdV type equation 

.1. Potential KdV equation 

In 1895, two Dutch physicists Diederick Korteweg and his
tudent Gustav de Vries derived a family of nonlinear partial
ifferential equation of the form, 

 t + f (u) u x + u x x x = 0, (3.1.1)

here u ( x, t ) is a function of space variable x and time vari-
ble t , now which is known as KdV equation in their names.
he coefficients of u x and u xxx can be used as constants but

hese constants can be easily scaled out. This well known
quation had already appeared in a work on water waves by
oussinesq in 1872. The potential KdV equation is obtained
y substituting f (u) = a u x in Eq. (3.1.1) by 

 t + a ( u x ) 
2 + u x x x = 0. (3.1.2) 

This equation models a variety of nonlinear phenomena
uch as plasma waves, shallow water waves and so on.
q. (3.1.2) shows that the rate of change of the wave’s height

n time is governed by the sum of two terms, one is non-
inear terms that have the amplitude effect and the other is
ispersive terms that have effect on waves of different wave-
engths to travel with different velocities. The derivative u t 

escribes the time evolution of the wave propagation in one
irection. The nonlinear term uu x characterizes the steepen-
ng of the wave, whereas the linear term u xxx accounts for
he spreading or dispersion of the wave. This equation is the
implest nonlinear partial differential equation embodying two
ffects: nonlinearity represented by uu x and linear dispersion
epresented by u xxx . The fragile balance between the weak
onlinearity and the linear dispersion defines the formulation
f soliton type traveling wave that consists of single humped
ave. 
Now, we apply the introduced method to obtain new and

ore general exact traveling wave solutions of the potential
dV Eq. (3.1.2) . 
By using the wave transformation ξ = x − ct ,

q. (3.1.2) converts into a nonlinear ODE in single in-
ependent variable ξ as 

cu 

′ + a (u 

′ ) 2 + u 

′′′ = 0, (3.1.3)

here u 

′ = 

du 
dξ

, u 

′′′ = 

d 3 u 
d ξ 3 . 

Considering the homogeneous balance between the nonlin-
ar term ( u 

′ ) 2 and the highest order derivative u ′′′ , it yields
 = 1 . On substituting the value of m in Eq. (2.13) our ansatz

olution is of the form as 

(ξ ) = a 0 + a 1 φ + b 1 ψ, (3.1.4) 

here the coefficients a 0 , a 1 , b 1 are to be determined. 

Case 1 : When λ < 0 (Hyperbolic function solutions) 
Substituting Eq. (3.1.4) , along with Eqs. (2.3) and
(2.5) into Eq. (3.1.3) , the left hand side of (3.1.3) be-
comes a polynomial in φ and ψ . Setting each coef-
ficient of the polynomial equal to zero, we derive a
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set of algebraic equations for c, a, a 0 , a 1 , b 1 , λ and
μ, as follows: 

φ4 : a λ4 σ 2 a 

2 
1 + 2a λ2 μ2 σa 

2 
1 − a λ3 σb 

2 
1 + a μ4 a 

2 
1 

− 6 λ4 σ 2 a 1 − aλμ2 b 

2 
1 − 12 λ2 μ2 σa 1 

φ3 ψ : 2a λ4 σ 2 a 1 + 4a λ2 μ2 σa 1 b 1 + 2a μ4 a 1 b 1 

− 6 λ4 σ 2 b 1 − 12 λ2 μ2 σb 1 − 6 μ4 b 

φ3 : 2a λ3 μσa 1 b 1 + 2aλμ3 a 1 b 1 − 6 λ3 μσb 1 − 6 λμ3 b

φ2 ψ : −2a λ4 μσ 2 a 

2 
1 − 4a λ2 μ3 σa 

2 
1 + 2a λ3 μσb 

2 
1 

− 2a μ5 a 

2 
1 − 12 λ4 μσ 2 a 1 + 2aλμ3 b 

2 
1 

+ 24 λ2 μ3 σa 1 + 12 μ5 a 1 

φ2 : 2a λ5 σ 2 a 

2 
1 + 3 a λ3 μ2 σa 

2 
1 − a λ4 σb 

2 
1 + aλμ4 a 

2 
1 

+ c λ4 σ 2 a 1 − 8 λ5 σ 2 a 1 − a λ2 μ2 b 

2 
1 

+ 2c λ2 μ2 σa 1 − 13 λ3 μ2 σa 1 + c μ4 a 1 − 5 λμ4 a 1 . 

φψ : 2a λ5 σ 2 a 1 b 1 − 2aλμ4 a 1 b 1 + c λ4 σ 2 b − 5 λ5 σ 2 b 1

+ 2c λ2 μ2 σb 1 + 2 λ3 μ2 σb 1 + c μ4 b 1 + 7 λμ4 b 1 

φ : 2a λ4 μσa 1 b 1 + 2a λ2 μ3 a 1 b 1 − 6 λ4 μσb 1 − 6 λ2 μ3 b

ψ : −2a λ5 μσ 2 a 

2 
1 − 2a λ3 μ3 σa 

2 
1 − c λ4 μσ 2 a 1 

+ 5 λ5 μσ 2 a 1 − 2c λ2 μ3 σa 1 

+ 4 λ3 μ3 σa 1 − c μ5 a 1 − λμ5 a 1 

φ0 : a λ6 σ 2 a 

2 
1 + a λ4 μ2 σa 

2 
1 + c λ5 σ 2 a 1 − 2 λ6 σ 2 a 1 

+ 2c λ3 μ2 σa 1 − λ4 μ2 σa 1 + cλμ4 a 1 + λ2 μ4 a 1 

Solving the above algebraic equations by using
Maple, we get the following results: 

a 0 = a 0 , a 1 = 

3 

a 

, b 1 = 

3 

√ 

−( λ2 σ + μ2 ) 

a 

√ 

λ
, c = −λ. 

(3.1.5)

Therefore, substituting the above values in Eq.
(3.1.4) , we get 

u(ξ ) = 

3 

√ −λ

a 

( A 1 cosh ( 
√ −λξ ) + A 2 sinh ( 

√ −λξ )

( A 1 sinh ( 
√ −λξ ) + A 2 cosh ( 

√ −λξ ) +

+ 

3 

a 

√ 

λ

√ 

−( λ2 σ + μ2 ) 

( A 1 sinh ( 
√ −λξ ) + A 2 cosh ( 

√ −λξ ) +
+ a 0 (3
 

 

In special cases, if taking A 1 = 0, A 2 > 0 and μ =
0, Eq. (3.1.6) becomes 

u(ξ ) = 

3 

√ 

c 

a 

( tanh ( 
√ 

c ξ ) + sech ( 
√ 

c ξ )) + a 0 

Substituting ξ = x − ct in the above equation, we
get the solution of the potential KdV Eq. (3.1.2) as 

u 1 (x, t ) = 

3 

√ 

c 

a 

(
tanh ( 

√ 

c (x − ct )) 

+ sech ( 
√ 

c (x − ct )) 
) + a 0 . (3.1.7)

In particular, if taking A 1 > 0, A 2 = 0 and μ = 0,
then the solution of the potential KdV equation be-
comes 

u 2 (x, t ) = 

3 

√ 

c 

a 

(
coth ( 

√ 

c (x − ct )) 

+ csch ( 
√ 

c (x − ct )) 
) + a 0 . (3.1.8)

Case 2 : When λ > 0 (Trigonometric function solutions) 
In the same way, as stated in case 1 , substituting
Eq. (3.1.4) , along with Eqs. (2.3) and (2.7) into Eq.
(3.1.3) , the left hand side of (3.1.3) becomes a poly-
nomial in φ and ψ . Again, setting each coefficient of
this polynomial to zero, we find a set of algebraic
equations for c, a, a 0 , a 1 , b 1 , λ and μ. For mini-
malism, the equations are not given herein. Solving
these algebraic equations by Maple, the following
values are obtained: 

a 0 = a 0 , a 1 = 

3 

a 

, b 1 = 

3 

√ 

( λ2 ρ − μ2 ) 

a 

√ 

λ
, c = −λ. 

(3.1.9)

Substituting the above values in Eq. (3.1.4) , we get
the solution of the potential KdV Eq. (3.1.2) as 

u(ξ ) = 

3 

√ 

λ

a 

( A 1 cos ( 
√ 

λξ ) − A 2 sin ( 
√ 

λξ )) 

( A 1 sin ( 
√ 

λξ ) + A 2 cos ( 
√ 

λξ ) + 

μ

λ
) 

+ 

3 

a 

√ 

λ

√ 

( λ2 ρ − μ2 ) 

( A 1 sin ( 
√ 

λξ ) + A 2 cos ( 
√ 

λξ ) + 

μ

λ
) 

+ a 0 (3.1.10)

In particular, when A 1 = 0, A 2 > 0 and μ = 0, so-
lution (3.1.10) simplified as 

u(ξ ) = 

−3 

√ −c 

a 

(
tan ( 

√ −c ξ ) 

+ sec ( 
√ −c ξ ) 

) + a 0 , c > 0. 



Md.A. Huda et al. / Journal of Ocean Engineering and Science 2 (2017) 47–54 51 

 

 

 

 

 

 

 

 

 

3

w

w  

x  

m  

c  

c  

d  

s  

m

u

v

 

E

−
−

 

t

u

v

w  

c  

a  

E

m

u
v

 

i  

h  

i  

w  

t

a

a

 

g

u

 

μ

u

 

C

w

On substituting ξ = x − ct , we obtain 

u 3 (x, t ) = 

3 

√ 

c 

a 

(
tan ( 

√ −c (x − ct )) 

+ sec ( 
√ −c (x − ct )) 

) + a 0 , c > 0. 

(3.1.11) 

In special cases, when A 1 > 0, A 2 = 0 and μ = 0,
then (3.1.10) can be written as 

u 4 (x, t ) = 

−3 

√ −c 

a 

(
cot ( 

√ −c (x − ct )) 

+ csc ( 
√ −c (x − ct )) 

) + a 0 , c > 0. 

(3.1.12) 

Case 3 : When λ = 0 (Rational function solution) 
Similarly, as stated in case 1 or case 2 , substituting
Eq. (3.1.14) , along with Eqs. (2.3) and (2.9) into
Eq. (3.1.13) , the left hand side of (3.1.3) becomes a
polynomial in φ and ψ . For simplicity and concise,
the algebraic equations are not given herein. Solv-
ing these algebraic equations by using Maple, the
following values are resulted: 

a 0 = a 0 , a 1 = 

3 

a 

, b 1 = 0, μ = 

1 

2 

A 

2 
1 

A 2 
. (3.1.13)

Substituting the above values in Eq. (3.1.4) , we get
the solution of the potential KdV equation as 

u 5 (x, t ) = 

(
1 
2 

A 2 1 
A 2 

( x − ct ) + A 1 

)
a 1 

1 
4 

A 2 1 
A 2 

( x − ct ) 2 + A 1 (x − ct ) + A 2 

+ a 0 , 

(3.1.14) 

where A 1 and A 2 are two arbitrary constants. 

.2. Complex modified KdV (CMKdV) equation 

The complex modified KdV equation is of the form 

 t + w x x x + α
(| w 

| 2 w 

)
x = 0, (3.2.1) 

here w is a complex valued function of the spatial coordinate
 and the time variable α t , is a real parameter. This equation
odels the nonlinear evolution plasma waves as well as in-

orporates the propagation of transverse waves in a molecular
hain model with a general elastic solid [31] . For analysis, to
ecompose w of Eq. (3.2.1) , into real and imaginary parts,
etting w = u + i v, i 2 = −1 , it yields the coupled pair of the
odified (mKdV) equations as 

 t + u x x x + α
[(

u 

2 + v 2 
)
u 

]
x = 0 

 t + v x x x + α
[(

u 

2 + v 2 
)
v 
]

x = 0 (3.2.2) 

Using the wave variable ξ = x − ct into the system of
q. (3.2.2) , and integrating we get 

cu + αu 

3 + αu v 2 + u 

′′ = 0 

cv + αv 3 + αv u 

2 + v ′′ = 0 

(3.2.3) 
As discussed in Section 2 , suppose that the solutions of
he above system in polynomials are 

(ξ ) = 

m ∑ 

i=0 

a i φ
i + 

m 1 ∑ 

i=1 

b i φ
i−1 ψ 

(ξ ) = 

m ∑ 

i=0 

c i φ
i + 

m 2 ∑ 

i=1 

d i φ
i−1 ψ (3.2.4) 

here the coefficients a i , b i (i = 0, 1 , 2, . . . , m 1 ) , and
 i , d i (i = 0, 1 , 2, . . . , m 2 ) , are to be determined. By bal-
ncing the higher order derivatives and nonlinear terms in
q. (3.2.3) , we get 

 1 = m 2 = 1 (3.2.1) 

Thus, solution formula Eq. (3.2.4) becomes 

(ξ ) = a 0 + a 1 φ + b 1 ψ 

(ξ ) = c 0 + c 1 φ + d 1 ψ. 
(3.2.6) 

Case 1 : When λ < 0 (Hyperbolic function solutions) 
Substituting the value of u ( ξ ) and v ( ξ ) from Eq. (3.2.6) ,

nto Eq. (3.2.3) , in conjunction with (2.3) and (2.5) , the left
and side of (3.2.3) becomes a polynomial in φ and ψ . Equat-
ng each coefficient of this polynomial to zero and solving
ith the help of Maple we get, (for simplicity and concise

he equations are not given) 

 0 = a 0 , a 1 = 

1 √ −2α
, b 1 = 

3 
√ 

( λ2 σ+ μ2 ) √ 

2αλ
, c = αv 2 + 

λ
2 

 0 = a 0 , a 1 = 

1 √ −2α
, b 1 = 

3 
√ 

( λ2 σ+ μ2 ) √ 

2αλ
, c = αu 

2 + 

λ
2 

(3.2.7) 

Therefore, substituting the above values in Eq. (3.2.6) , we
et the solution of Eq. (3.2.2) as 

(ξ ) = v(ξ ) 

= 

√ 

λ

2α

( A 1 cosh ( 
√ −λξ ) + A 2 sinh ( 

√ −λξ )) (
A 1 sinh ( 

√ −λξ ) + A 2 cosh ( 
√ −λξ ) + 

μ

λ

)

+ 

1 √ 

2αλ

√ (
λ2 σ + μ2 

)
(
A 1 sinh ( 

√ −λξ ) + A 2 cosh ( 
√ −λξ ) + 

μ

λ

)
(3.2.8) 

Now, for particular cases, if we set A 1 = 0, A 2 > 0 and
= 0, it implies that 

(x, t ) = v(x, t ) 

= 

√ 

λ

2α
[ tanh ( 

√ −λ(x − ct ) + sech 

√ −λ(x − ct )) ] . 

Noting that, w(x, t ) = u(x, t ) + iv(x, t ) , the solution of the
MKdV Eq. (3.2.1) is 

 1 (x, t ) = (1 + i) 

√ 

λ

2α

× [ tanh ( 
√ −λ(x − ct ) + sech 

√ −λ(x − ct )) ] . 

(3.2.9) 
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Again, for special cases, if taking A 1 > 0, A 2 = 0 and μ =
0, implies that 

u(x, t ) = v(x, t ) 

= 

√ 

λ

2α
[ coth ( 

√ −λ(x − ct ) + csch 

√ −λ(x − ct )) ] . 

Therefore, the solution of CMKdV Eq. (3.2.1) is 

w 2 (x, t ) = (1 + i) 

√ 

λ

2α

× [ coth ( 
√ −λ(x − ct ) + csch 

√ −λ(x − ct ))] . 

(3.2.10)

Case 2 : When λ > 0 (Trigonometric function solutions) 
Again, substituting the value of u ( ξ ) and v ( ξ ) of Eq.

(3.2.6) , into Eq. (3.2.3) , together with (2.3) and (2.7) , the
left hand side of Eq. (3.2.3) transforms into a polynomial in
φ and ψ . Equating each coefficient of this polynomial to zero
and solving with the help of Maple we get, 

u(ξ ) = v(ξ ) 

= 

√ 

λ

−2α

( A 1 cos ( 
√ 

λξ ) − A 2 sin ( 
√ 

λξ )) 

( A 1 sin ( 
√ 

λξ ) + A 2 cos ( 
√ 

λξ ) + 

μ

λ
) 

+ 

1 √ 

2αλ

√ 

( −λ2 ρ + μ2 ) 

( A 1 sin ( 
√ 

λξ ) + A 2 cos ( 
√ 

λξ ) + 

μ

λ
) 
. 

(3.2.11)

In particular, if taking A 1 = 0, A 2 > 0 and μ = 0, it
yields 

u(x, t ) = v(x, t ) 

= 

√ 

λ

−2α
[ − tan ( 

√ 

λ(x − ct ) + sec 
√ 

λ(x − ct )) ] 

Therefore, the solution of Eq. (3.2.1) is 

w 3 (x, t ) = (1 + i) 

√ 

λ

−2α

× [ − tan ( 
√ 

λ(x − ct ) + sec 
√ 

λ(x − ct )) ] . 

(3.2.12)

Again for special cases, when A 1 > 0, A 2 = 0 and μ = 0,
it yields 

u(x, t ) = v(x, t ) 

= 

√ 

λ

−2α
[ cot ( 

√ 

λ(x − ct ) + csc 
√ 

λ(x − ct )) ] . 

Thus, the solution of the Eq. (3.2.1) is 

w 4 (x, t ) = (1 + i) 

√ 

λ

−2α
[ cot ( 

√ 

λ(x − ct ) + csc 
√ 

λ(x − ct )) ]

(3.213)

Case 3 : When λ = 0 (Rational function solution) 
In a similar fashion, as stated in case 1 , substituting the

value of u ( ξ ) and v ( ξ ) of Eq. (3.2.6) , into Eq. (3.2.3) , along-
side with (2.3) and (2.9) , the left hand side of Eq. (3.2.3) be-
comes a polynomial in φ and ψ . For brevity and concise, the
lgebraic equations are not given herein. Solving these alge-
raic equations using with Maple, the following values are
esulted: 

= 0, a 0 = 0, a 1 = 

√ 

− 2 

α
, b 1 = 0, c = αv 2 + 2λ. (3.2.14)

On substituting these values in (3.2.6) , we get the solution
f Eq. (3.2.2) is 

(x, t ) = v(x, t ) = 

A 1 

√ 

− 2 
α

A 1 (x − ct ) + A 2 
, 

here A 1 and A 2 are two arbitrary constants. 
Therefore the solution of the complex modified KdV

q. (3.2.1) , is 

 5 (x, t ) = (1 + i) 
A 1 

√ 

− 2 
α

A 1 (x − ct ) + A 2 
. (3.2.15)

The other different types of solution of these equations are
arried out by different authors [31–34] , and it is worthy to
ote that the solutions we obtained in here are different. 

. Results and discussion 

The key idea of ( G 

′ / G , 1/ G )-expansion method is to present
he solution of a NLEE by a polynomial in two variables
 G 

′ / G ) and (1/ G ), where G = G (ξ ) satisfies an auxiliary
econd-order LODE whereas Li et al. [28] , considered the
olution of the NLEE as single variable function of ( G 

′ / G )
nd the auxiliary equation is different from the presented ap-
roach. In special case, when μ = 0 in Eq. (2.1) and b i = 0
n Eq. (2.13) , the ( G 

′ / G , 1/ G )-expansion method reduces to
he original ( G 

′ / G )-expansion method. As a result, the ( G 

′ / G ,
/ G )-expansion method can be regarded as a generalization
f the ( G 

′ / G )-expansion method. 
Wazwaz [31] derived exact solutions of the family of KdV

ype equations. Most of the solutions of Wazwaz, (A.1) –
A.8) , are in the form hyperbolic or trigonometric functions
ndividually (see Appendix). Herein, our derived solutions
 1 (x, t ) − u 5 (x, t ) and w 1 (x, t ) − w 5 (x, t ) are quite different,
hey are in the form of linear combination of hyperbolic or
rigonometric functions or in the form of rational function.
hus, these solutions are new. 

Besides Wazwaz solutions, other notable three, among
any remarkable works for exact solutions of the KdV type

quations have been found in [32,33,34] . Huiqun [32] , ap-
lied an approach for finding exact solution of the KdV equa-
ion and obtained solutions (A.9) –(A.11) which is different
rom our approach and the obtained solutions are also differ-
nt from his work. Gang-Wei et al. [33] applied the ( G 

′ / G )-
xpansion method and the exp-function method to the poten-
ial KdV equation for the singular soliton solution and all
he solutions derived in this work are completely different
rom the solutions obtained in this article. Kumar and Chand
34] found bright and dark soliton solutions of the complex
odified KdV equation by a new approach which is also en-

irely different from the present work. 
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Fig. 1. Graph of soliton type of traveling wave of u 1 ( x, t ). 

Fig. 2. Graph of singular traveling wave of u 2 ( x, t ). 
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Some of our obtained traveling wave solutions are graph-
cally presented in the following figures: 

Figs. 1 and 2 are drawn for the particular value of a =
 , c = 2 and in the range of −4 ≤ x, t ≤ 4. 

Numerous traditional methods exist in finding the analyti-
al solution of NLEEs and each of them some advantages and
isadvantages. Many methods provide solutions in the form
f series and raise a burning issue to investigate the conver-
ence of approximation series e.g. Adomian decomposition
ethod [18,35] , depends only on the initial conditions and
ay need to test the convergence of the obtained solution.
ome methods need linearization or to convert the inhomo-
eneous boundary conditions to homogeneous and so on. In
ddition, all numerical methods e.g. finite difference or finite
lement methods, it is necessary to have boundary and initial
onditions. The main advantage of the ( G 

′ / G , 1/ G )-expansion
ethod over other methods is that it attacks the problems in
 straightforward fashion without using linearization, pertur-
ation or any other restrictive assumption that may change
he physical behavior of the model under discussion. More-
ver, the availability of computational software like Maple or
athematica facilitates the tedious algebraic calculations. 

. Conclusion 

In this article, we have suggested and applied the
 G 

′ / G , 1/ G )-expansion method to obtain closed form trav-
ling wave solutions of two nonlinear evolution equa-
ions. Typically, the family of KdV-type equation is
onsidered herein to illustrate the effectiveness of the method
nd some newborn solutions are successfully obtained. The
erived traveling wave solutions are expressed in terms of hy-
erbolic, trigonometric and rational functions involving some
ree parameters. The procedure of this method is quite sim-
le and the computational techniques are straightforward, effi-
ient, as well as, practically well suited for handling nonlinear
volution equations. The suggested method in this article is
ore effective and general than that of the other methods as it

ives exact solutions in more general forms. The new type of
olutions obtained in this work might have significant impact
n future researches. It will be worthy for further studies in
hysical sciences. 
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ppendix 

Wazwaz solution [31] 
Wazwaz [31] investigated exact solutions of the KdV type

quations by sine–cosine and tanh–coth method. He derived
our explicit solutions as follows: 

 1 (x, t ) = 

3 

√ 

c 

a 

tanh 

[√ 

c 

2 

(x − ct ) 

]
, c > 0 (A.1)

 2 (x, t ) = 

3 

√ 

c 

a 

coth 

[√ 

c 

2 

(x − ct ) 

]
, c > 0 (A.2)

 3 (x, t ) = 

1 √ 

3 c R 2 −aR 
√ 

c 
3 c + R tanh 

[√ c 
2 (x − ct ) 

] (A.3) 

 4 (x, t ) = 

1 √ 

3 c R 2 −aR 
√ 

c 
3 c + R coth 

[√ c 
2 (x − ct ) 

] (A.4) 

For the case of complex modified KdV equation, four so-
utions are obtained by sine–cosine method and twelve solu-
ions are obtained by tanh–coth method. Notice that among
ixteen solutions some are identical with others or some are
ombination of others. Here few solutions are given: 

 1 (x, t ) = (1 + i) 

√ 

c 

α
csc ( 

√ −c (x − ct )) , 0 < μ(x − ct ) < π

(A.5) 

 2 (x, t ) = (1 + i) 

√ 

c 

α
sec ( 

√ −c (x − ct )) , 0 < μ(x − ct ) < π

(A.6) 
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[
[
[
[  

[  

[  

[  

[  

[
[  

[
[  
w 3 (x, t ) = i 
1 

2 

√ 

c 

α

( 

tanh 

( 

1 

2 

√ −c 

2 

(x − ct ) 

) ) 

+ coth 

( 

1 

2 

√ −c 

2 

(x − ct ) 

) 

(A.7)

w 4 (x, t ) = i 
1 

2 

√ −c 

2α

(
tanh 

(
1 

2 

√ 

c (x − ct ) 

))

+ coth 

(
1 

2 

√ 

c (x − ct ) 

)
(A.8)

Huiqun’s solution [32] 
Huiqun [32] derived solutions of the complex KdV equa-

tion, some of them are followings: 

w 5 (x, t ) = 2 k 2 b tanh 

2 ( 
√ −b z) − 1 

3 

(2 k 2 b + c) 

+ i 

( 

±
√ 

−4b k 2 

3 

( k 2 b − c) tanh ( 
√ −b z) + b 0 

) 

, 

z = ik(x − ct ) (A.9)

w 6 (x, t ) = −2 k 2 b tanh 

2 ( 
√ 

b z) − 1 

3 

(2 k 2 b + c) 

+ i 

( 

±
√ 

4b k 2 

3 

( k 2 b − c) tan ( 
√ 

b z) + b 0 

) 

, 

z = ik(x − ct ) (A.10)

w 7 (x, t ) = ±
√ 

2 k 2 b 

α
[ tan ( 

√ 

b z) ± cot ( 
√ 

b z) ] , z = ik(x − ct ) 

(A.11)
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