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Abstract 

New analytical solutions are derived to estimate the interaction of surface and groundwater in a stream–aquifer system. The analytical 
model consists of an unconfined sloping aquifer of semi-infinite extant, interacting with a stream of varying water level in the presence of 
a thin vertical sedimentary layer of lesser hydraulic conductivity. Flow of subsurface seepage is characterized by a nonlinear Boussinesq 
equation subjected to mixed boundary conditions, including a nonlinear Cauchy boundary condition to approximate the flow through the 
sedimentary layer. Closed form analytical expressions for water head, discharge rate and volumetric exchange are derived by solving the 
linearized Boussinesq equation using Laplace transform technique. Asymptotic cases such as zero slope, absence of vertical clogging layer and 
abrupt change in stream-stage can be derived from the main results by taming one or more parameters. Analytical solutions of the linearized 
Boussinesq equation are compared with numerical solution of corresponding nonlinear equation to assess the validity of the linearization. 
Advantages of using a nonlinear Robin boundary condition, and combined effects of aquifer parameters on the bank storage characteristic 
of the aquifer are illustrated with a numerical example. 
© 2016 Shanghai Jiaotong University. Published by Elsevier B.V. 
This is an open access article under the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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1. Introduction 

Mathematical formulation of subsurface seepage flow
over horizontal beds is derived using conventional Dupuit–
Forchheimer assumption in which streamlines are considered
to be approximately horizontal and the gradient of hydraulic
potential same as the absolute slope of the water table [18] .
When the bed of an unconfined aquifer bed is sloping, the
flow is constrained to the direction nearly parallel to the bed
[10,13] , i.e. streamlines are approximately parallel to the slop-
ing bed, and equipotential are perpendicular to the bed. The
consideration that the flow pattern is controlled by the bed
slope yields the discharge rate, q , per unit width of the aquifer
by the relation [12] : 

q = −K h cos 2 β

[
∂h 

∂x 
− tan β

]
(1)
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here h is the height of the water table measured in the ver-
ical direction from the sloping base; x is spatial coordinate;
 is the hydraulic conductivity of the aquifer, and tan β is

he bed slope. Considering a representative elementary vol-
me and applying principle of mass balance on it, the flow
f subsurface seepage in horizontal and vertical axes system
s approximated by the following nonlinear Boussinesq equa-
ion: 

∂ 

∂x 

(
h 

∂h 

∂x 

)
− tan β

∂h 

∂x 
= 

S 

K cos 2 β

∂h 

∂t 
(2)

here S is the specific yield of the aquifer. Eq. (2) is in-
eed a nonlinear advection–diffusion equation which plays
ey role in approximation of unconfined groundwater flow
ver sloping bed. Numerical and experimental studies [19] in-
icate that the results obtained from Eq. (2) are reasonably
alid for bed slope up to 30%, i.e. tan β ≤0.3. Due to non-
inearity, Eq. (2) is analytically intractable. However, approx-
mate analytical solutions of Boussinesq equation have been
sed in numerous studies to analyze the transient behavior of
 is an open access article under the CC BY-NC-ND license. 
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Fig. 1. Schematic diagram of the stream–aquifer system consisting of an 
unconfined aquifer of semi-infinite extent overlying an impervious sloping 
base and interacting with a time-varying stream in presence of thin vertical 
sedimentary layer. 
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tream–aquifer models under varying hydrological conditions 
1–4,11,15,5–7,23,8] . 

Most of the fundamental studies on surface–groundwater
nteractions focus on estimation of water exchange between
treams and aquifers, without taking the effects of vertical
logging layer into account [14,16,22,24] . Often, if not al-
ays, the water interaction between streams and aquifers is
ediated by a vertical layer of low permeable sedimentary

eposits, henceforth referred to as streambank. Such layers
re formed by deposition of silt particles or loading of waste
long river/stream bank in rivers whose streamflow is sluggish
9,20,25] . These layers decelerate the seepage flow from river
o aquifer and vice-versa. For horizontal strata, the approach
o estimate the flow through the streambank is to consider
he seepage velocity a function of difference between stream
tage and aquifer’s water table [17] ; however, there is not
uch discussion in the literature on approximation of seep-

ge flow through streambank when a fully penetrating stream
nteracts with an unconfined sloping aquifer. 

Recently, Bansal et al. [8] derived an appropriate form of
oundary condition to simulate the flow through streambank
n an archetypical stream–aquifer model in which the aquifer
s resting on sloping impervious bed. The problem of seepage
ow between an unconfined aquifer of semi-infinite extent and
 fully penetrating stream of time-varying water level in the
resence of vertical streambank (see Fig. 1 ) is characterized
y the following linearized form of Boussinesq Eq. (2) . 

∂ 2 h 

∂ x 2 
− tan β

h avg 

∂h 

∂x 
= 

S 

K h avg cos 2 β

∂h 

∂t 
(3) 

here h avg is the average saturated depth of the aquifer given
y an iterative formula h avg = ( h i + h t )/2; h i is the initial depth
nd h t is the variable height at time t , at the end of which
 avg is calculated. Considering that the flow at stream–aquifer
nterface is made up of two terms, namely flow due to head
ariation across the streambank, and flow due to bed slope,
hey derived an appropriate nonlinear boundary condition at
he stream–aquifer interface, given by 

K cos 2 β h 

(
x = 0 

+ , t 
)(∂h 

∂x 

)
x=0 

= −k 
h 

2 
(
x = 0 

+ , t 
) − h 

2 
s ( t ) 

2b 

(4) 
here k and b are the hydraulic conductivity and thickness of
he clogging layer. The stream-stage variation h s ( t ) from an
nitial level h i to a final level h f , controlled by a nonnegative
arameter λ, is given by the transient relation 

 s (t ) = h f −
(
h f − h i 

)
e −λt (5) 

Moreover, an initial condition of depth independent water
able reads 

 ( x, t = 0 ) = h i (6) 

nd a far-end boundary condition is 

 ( x → ∞ , t ) = h i (7) 

Assuming that the head loss across streambank is small,
ansal et al. [8] used the approximation | h s ( t ) – h ( x = 0 

+ ,
 )| << h ( x = 0 

+ , t ). With this consideration, they simulated the
onlinear boundary condition ( 4 ) by a simpler linear equation

K cos 2 β

(
∂h 

∂x 

)
x=0 

= −k 
h 

(
x = 0 

+ , t 
) − h s ( t ) 

b 

(8) 

The term ( Kb cos 2 β)/ k = r denotes the streambed retar-
ation coefficient or streambank leakance in sloping aquifer.
his parameter controls the degree of hydraulic connection
etween the stream and aquifer, and depends on the physical
roperties of the sediments that make this layer. It is demon-
trated in Bansal et al. [8] that the linearization of boundary
ondition ( 4 ) yields acceptable results only when the stream-
tage variations and streambank leakance are in narrow range
 h f – h i < 30% of h i and streambank leakance r < 10). When
he ratios | h f – h i |/ h i and streambank leakance are large, the
nalytical solutions developed by Bansal et al. [8] varied con-
iderably from the numerical solution of the corresponding to
onlinear boundary condition ( 4 ). These facts highlight prac-
ical limitations of the results developed by Bansal et al. [8] .

The aim of the present study is to develop new analytical
olution of the linearized Boussinesq equation subjected to
onlinear boundary condition ( 4 ) along with initial condition
 6 ) and a far-end boundary condition ( 7 ). Closed form analyt-
cal expressions are obtained using Laplace transform method
o predict the spatio-temporal distribution of water head, rate
f discharge and volumetric exchange between stream and
quifer for rise and decline in the stream-stage. Few pre-
iously known results are derived as special cases of the
ain results of this study. Numerical solution of the non-

inear Boussinesq Eq. (2) subjected to nonlinear condition ( 4 )
re also developed using an explicit Dufort–Frankel method
o assess the validity of analytical solutions for large value of
he ratios | h f – h i |/ h i and streambank leakance ratio r . 

. Analytical solution of linearized Boussinesq equation 

Assuming that the unconfined downward sloping aquifer
s homogeneous and isotropic, and the streamlines are nearly
arallel to the sloping bed, the flow of subsurface seepage is
overned by nonlinear Boussinesq Eq. (2) . This equation is
 second order parabolic partial differential equation whose
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analytical solution is not tractable; however closed form so-
lutions of the corresponding linearized Boussinesq equation
are widely accepted for small variations in the stream-stage.
It is worth mentioning that the Boussinesq equation can be
linearized in terms of h or h 

2 , depending on the type of
boundary conditions used in the study. Moreover, it has been
brought out in several studies that linearization in terms of
h 

2 yields better approximation of the solution than that of h .
In this study, linearization in terms of h 

2 is preferred due to
nonlinear nature of boundary condition ( 4 ). Rewrite Eq. (2)
as 

∂ 

∂x 

(
1 

2 

∂ h 

2 

∂x 

)
− tan β

(
1 

2h 

∂ h 

2 

∂x 

)
= 

S 

K cos 2 β

(
1 

2h 

∂ h 

2 

∂t 

)
(9)

Now, replacing the term 1/ h associated with second and
third bracket by some judicious depth h avg which can be
obtained using analogy of Marino [16] with the formula
h avg = ( h i + h t )/2, where h i is the initial water table and h t 

is the water table at time t at the end of which, h avg is cal-
culated. Eq. (9) reads: 

∂ 

∂x 

(
∂ h 

2 

∂x 

)
− tan β

h avg 

(
∂ h 

2 

∂x 

)
= 

S 

K h avg cos 2 β

(
∂ h 

2 

∂t 

)
(10)

Water table in the stream varies (rise and decline) from an
initial level h i to a final level h f by a known exponential func-
tion of time t given by Eq. (5) . The depth independent initial
condition is represented by Eq. (6) , whereas the variations
in the boundaries are simulated using conditions ( 4 ) and ( 7 ).
Eq. (10) is linearized form of Boussinesq equation; primarily
an advection–diffusion equation; which can be solved using
Laplace transform technique. The main steps in the solution
procedure include introduction of the following dimensionless
variables 

H = 

h 

2 − h 

2 
i 

h 

2 
f − h 

2 
i 

, X = 

x 

h i 
, τ = 

K h avg cos 2 β

S h 

2 
i 

t (11)

so that Eq. (10) is transformed to the form 

∂ 2 H 

∂ X 

2 
− 2α

∂H 

∂X 

= 

∂H 

∂τ
(12)

where 

α = 

h i tan β

2 h avg 
(13)

The initial and boundary conditions become 

H ( X, 0 ) = 0 (14)

H ( X → ∞ , τ ) = 0 (15)

R 

(
∂H 

∂X 

)
X =0 

= H 

(
X = 0 

+ , τ
)

− 1 + ρ e −λ1 τ + ( 1 − ρ) e −2 λ1 τ (16)

where 
 = 

r 

h i 
= 

K b cos 2 β

k h i 
; λ1 = 

S h 

2 
i 

K h avg cos 2 β
λ; ρ = 

2 h f 

h f + h i 

(17)

Now, Laplace transform is applied on Eq. (10) , leading to
he following ordinary differential equation 

d 

2 H̄ 

d X 

2 
− 2α

d H̄ 

dX 

− s H̄ = 0 (18)

here H̄ denotes the Laplace transform of H . Eq. (18) can
e solved using standard method. The arbitrary constants con-
ained in its general solution can be determined by invoking
aplace transform of boundary conditions ( 15 ) and ( 16 ). The

esulting solution is 

¯
 ( X, s ) = 

1 (
α − √ 

α2 + s 
)

R − 1 

{
ρ

s + λ1 
+ 

1 − ρ

s + 2 λ1 
− 1 

s 

}

× e ( α−√ 

α2 + s ) X (19)

Using various properties of inverse Laplace transform, so-
ution of Eq. (19) can be obtained in terms of variable τ .
fter some simplification, the solution of Eq. (12) reads: 

 ( X, τ ) = 

1 

2 

{
erfc 

(
X 

2 

√ 

τ
− α

√ 

τ

)

+ 

e 2α X 

F 

erfc 

(
X 

2 

√ 

τ
+ α

√ 

τ

)}

− ρ e −λ1 τ

2 

{
e ( α −α1 ) X 

1 − R ( α − α1 ) 
erfc 

(
X 

2 

√ 

τ
− α1 

√ 

τ

)

+ 

e ( α+ α1 ) X 

1 − R( α + α1 ) 
erfc 

(
X 

2 

√ 

τ
+ α1 

√ 

τ

)}

− ( 1 − ρ) e −2 λ1 τ

2 

×
{ 

e ( α−α′ 
1 ) X 

1 − R ( α − α′ 
1 ) 

erfc 

(
X 

2 

√ 

τ
− α′ 

1 
√ 

τ

)

+ 

e ( α+ α′ 
1 ) X 

1 − R ( α + α′ 
1 ) 

erfc 

(
X 

2 

√ 

τ
+ α′ 

1 
√ 

τ

)} 

+ ( 1 − αR ) 

{
ρ

F + λ1 R 

2 
+ 

1 − ρ

F + 2 λ1 R 

2 
− 1 

F 

}
e 
(

X 
R + 

F 
R 2 

τ
)

× erfc 

(
X 

2 

√ 

τ
+ 

1 − αR 

R 

√ 

τ

)
(20)

here α1 = ( α2 – λ1 ) 1/2 , α1 ́= ( α2 – 2 λ1 ) 1/2 , and F = 1 – 2 α R .
t can be observed that for marginally sloping aquifers and
apidly rising streams, α2 < λ1 implying that the parameter
1 is pure imaginary. However, the complex numbers corre-
ponding to complementary error function appear in conju-
ate pairs, and thus, the resultant value of the right-hand side
s always real. For upward sloping aquifers, the correspond-
ng results can be obtained by replacing α by –α. When the
mpervious bed is horizontal aquifer, we have α = 0, α1 = i
 λ1 ) 1/2 , α1 ́= i (2 λ1 ) 1/2 and F = 1. Using them in Eq. (20) , the
esult can be expressed as 
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 ( X, τ ) = erfc 

(
X 

2 

√ 

τ

)

+ 

{
ρ

1 + λ1 R 

2 
+ 

1 − ρ

1 − 2 λ1 R 

2 
− 1 

}
e 
(

X 
R + 

1 
R 2 

τ
)

× erfc 

(
X 

2 

√ 

τ
+ 

1 

R 

√ 

τ

)

− ρ e −λ1 τ

2 

{ 

e −i 
√ 

λ1 X 

1 + i R 

√ 

λ1 
erfc 

(
X 

2 

√ 

τ
− i 

√ 

λ1 τ

)

+ 

e i 
√ 

λ1 X 

1 − i R 

√ 

λ1 
erfc 

(
X 

2 

√ 

τ
+ i 

√ 

λ1 τ

)} 

− ( 1 − ρ) e −2 λ1 τ

2 

×
{ 

e −i 
√ 

2 λ1 X 

1 + i R 

√ 

2 λ1 
erfc 

(
X 

2 

√ 

τ
− i 

√ 

2 λ1 τ

)

+ 

e i 
√ 

2 λ1 X 

1 − i R 

√ 

2 λ1 
erfc 

(
X 

2 

√ 

τ
+ i 

√ 

2 λ1 τ

)} 

(21) 

hich are in complete agreement with results of Teloglou
nd Bansal [21] when the downward leakage in their study is
onsidered to be zero. For instantaneous rise in the stream-
tage ( λ1 → ∞ ), Eq. (21) reads 

 ( X, τ ) = erfc 

(
X 

2 

√ 

τ

)
− e 

(
X 
R + 

1 
R 2 

τ
)
erfc 

(
X 

2 

√ 

τ
+ 

1 

R 

√ 

τ

)
(22) 

hich are identical to the expression for water head distribu-
ion derived by Marino [16] . 

. Analytical expressions for discharge rate and 

olumetric exchange 

Discharge rate per unit width of the aquifer is given by
q. (1) . The mass balance equation that leads to simulation
f groundwater flow by Eq. (9) is based on the assumption
hat the linear expression for discharge rate is given by 

 = −K cos 2 β

2 

[
∂ h 

2 

∂x 
− h 

2 

h avg 
tan β

]
(23) 

Now, define a normalized discharge rate, Q , which can be
xpressed in terms of dimensionless water head, H , as 

 = 

2 h i 

K 

(
h 

2 
f − h 

2 
i 

)
cos 2 β

q = −
[
∂H 

∂X 

− 2α H − C 

]
(24) 

here Q = Q ( X, τ ), q = q ( x, t ), H = H ( X, τ ), C = ( h i 
3 tan

)/{ h avg ( h f 
2 – h i 

2 )}. The dimensionless discharge rate through
nit width of streambank is given by 

 0 (τ ) = Q(X = 0, τ ) 

= −
[(

∂H 

∂X 

)
X =0 

− 2αH ( X = 0 

+ , τ ) − C ] (25) 
Evaluation of right-hand side requires use of Eq. (20) , we
btain 

 0 (τ ) = −F 

R 

H ( X = 0 

+ , τ ) 

+ 

1 − ρ e −λ1 τ − ( 1 − ρ) e −2 λ1 τ

R 

+ C (26) 

The value of H ( X = 0 

+ , τ ) can be obtained from Eq. (20) .
oting that erfc (–z ) = 2 – erfc ( z ), the expression for the flow

ate can be simplified as 

 0 (τ ) = −α erfc 
(
α
√ 

τ
) + 

α1 ρ F 

F + λ1 R 

2 
e −λ1 τ erfc( α1 

√ 

τ ) 

+ 

α′ 
1 ( 1 − ρ) F 

F + 2 λ1 R 

2 
e −2 λ1 τ erfc( α′ 

1 
√ 

τ ) 

− ( 1 − αR ) F 

R 

{
ρ

F + λ1 R 

2 
+ 

( 1 − ρ) 

F + 2 λ1 R 

2 
− 1 

F 

}
e 

F 
R 2 

τ

× erfc 

(
1 − αR 

R 

√ 

τ

)

+ 2α + C − ρ

R 

{
1 − F 

1 − R( α − α1 ) 

}
e −λ1 τ

− ( 1 − ρ) 

R 

{
1 − F 

1 − R( α − α′ 
1 ) 

}
e −2 λ1 τ (27)

In case the aquifer is underlain by a horizontal impervious
ase, the expression for flow rate reduces to 

 0 (τ ) = 

iρ
√ 

λ1 

1 + λ1 R 

2 
e −λ1 τ erfc( i 

√ 

λ1 τ ) 

+ 

i( 1 − ρ) 
√ 

2 λ1 

1 + 2 λ1 R 

2 
e −2 λ1 τ erfc( i 

√ 

2 λ1 τ ) 

− 1 

R 

{
ρ

1 + λ1 R 

2 
+ 

( 1 − ρ) 

1 + 2 λ1 R 

2 
− 1 

}
e 

1 
R 2 

τ

× erfc 

(
1 

R 

√ 

τ

)
− ρ

R 

{
1 − 1 

1 + R 

√ 

λ1 

}
e −λ1 τ

− ( 1 − ρ) 

R 

{
1 − 1 

1 + R 

√ 

2 λ1 

}
e −2 λ1 τ (28) 

Furthermore, if the variation in the stream stage is instan-
aneous, the flow rate at stream–aquifer interface can be ob-
ained by setting λ1 → ∞ in Eq. (28) . The resulting expres-
ion is 

 0 (τ ) = 

1 

R 

e 
1 

R 2 
τ erfc 

(
1 

R 

√ 

τ

)
(29) 

hich is in full conformity with Marino [16] . 
Net volume, v ( t ), of water that enters in or leaves the

quifer through unit width of stream–aquifer interface can be
btained by integrating the flow rate q ( x = 0, t ) with respect
o time t in the interval [0, t ]. In terms of normalized variable,
he dimensionless volumetric exchange can be defined as: 

 (τ ) = 

v(t ) 

S h i ( h f − h i ) 
= 

∫ τ

0 
Q 0 ( τ

′ ) dτ ′ (30) 

here τ ʹ is the variable of integration. Using various prop-
rties of complementary error function and its product with
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h  
exponential function, we finally obtain 

 (τ ) = 

√ 

τ

π
e −α2 τ − 1 

α

{
1 

2 

+ 

α2 
1 ρF 

λ1 ( F + λ1 R 

2 ) 

+ 

α2 
1 ( 1 − ρ) F 

2 λ1 ( F + 2 λ1 R 

2 ) 
+ ( 1 − α R ) 2 	

}
er f ( α

√ 

τ ) 

−
{ 

ατ erfc( α
√ 

τ ) + 

α1 ρ F e −λ 1 τ

λ1 
(
F + λ1 R 

2 
) erfc( α1 

√ 

τ ) 

+ 

α′ 
1 ( 1 − ρ) F e −2 λ 1 τ

2 λ1 ( F + 2 λ1 R 

2 ) 
erfc( α′ 

1 
√ 

τ ) 

+ R( 1 − α R )	 e 
F 
R 2 

τ erfc 

(
1 − α R 

R 

√ 

τ

)}
+ ( 2α + C ) τ + 	′ 

− ρ

R 

{
1 − F 

1 − R( α − α1 ) 

}(
1 − e −λ1 τ

λ1 

)

− ( 1 − ρ) 

R 

{
1 − F 

1 − R( α − α′ 
1 ) 

}(
1 − e −2 λ1 τ

2 λ1 

)
(31)

where 

	 = 

ρ

F + λ1 R 

2 
+ 

1 − ρ

F + 2 λ1 R 

2 
− 1 

F 

(32)

	′ = 

α1 ρF 

λ1 ( F + λ1 R 

2 ) 
+ 

α′ 
1 ( 1 − ρ) F 

2 λ1 ( F + 2 λ1 R 

2 ) 
(33)

4. Comparison of analytical and numerical solutions 

Numerical solution of the nonlinear Boussinesq
Eq. (2) subjected to conditions ( 4 )–( 7 ) is obtained by
employing the Du Fort and Frankel (1953) scheme. The
proposed scheme is an explicit finite difference numeri-
cal scheme which proceeds in three time levels. Rewrite
Eq. (2) as 

∂h 

∂t 
= A 1 

[ 

h 

∂ 2 h 

∂ x 2 
+ 

(
∂h 

∂x 

)2 
] 

− A 2 
∂h 

∂x 
(34)

where A 1 = ( K cos 2 β)/ S and A 2 = K sin2 β/(2 S ). In Du Fort
and Frankel scheme, the first order derivatives of h with re-
spect to x and t are approximated using central differences,
i.e. 
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h 
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2
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+ O( ( 
x ) 2 ) (36)

whereas, the second order derivative ∂ 2 h / ∂x 2 is approximated
by 

∂ 2 h 

n 
m 

∂ x 2 
= 

h 

n 
m+1 − 2h 

n 
m 

+ h 
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m−1 

( 
x ) 2 
+ O( ( 
x ) 2 ) (37)
Furthermore, the middle term h m 

n in the right-hand side
f Eq. (37) is replaced by the arithmetic mean of h m 

n –1 and
 m 

n + 1 . That is 
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(38)

here m = 1 and n = 1 correspond to x = 0 and t = 0 respec-
ively. The above finite difference approximations are second
rder accurate. Using them in Eq. (34) , we get 
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Expressing h 

n + 1 explicitly in terms of h 

n and h 

n –1 , we
btain 
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(40)

It is worth noting that Eq. (40) is two-step method requir-
ng values of h at time steps n –1 and n to determine the
alue at current step n + 1. Consequently, the above formula
annot be used for determination of water head at time step
 = 2. Thus, for n = 2, we use an alternative discretization of
q. (34) , which consist backward difference approximation

or ∂ h / ∂ t . That is 
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Setting n = 2 in it, we get 
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The initial and boundary conditions are discretized as fol-
ows: 

 

1 
m 

= h i (43)

 

n 
M 

= h i (44)
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Fig. 2. RPD between analytical and numerical solution under nonlinear boundary condition. The rise in the stream-stage is: (a) 100% of h i , and (b) 200% of 
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here M is a large number such that the product M �x can
e treated as infinity for computational purpose. To main-
ain second order accuracy in the discretization of nonlinear
oundary condition ( 4 ), we use the following central differ-
nce approximation 
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)
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(45) 

o that, Eq. (4) reads 
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here R ́= ( K b cos 2 β)/ k . Eq. (46) can be further simplified
o obtain the values of water head at stream–aquifer interface
y solving the quadratic equation 
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Numerical experiments indicate that the method is stable
hen �t /( �x ) 2 ≤ (0.05) 2 . Analytical solutions are compared
ith numerical solution of the nonlinear Boussinesq equation
sing L 2 and Tchebycheff norms. The L2 norm determines
he average distance between the numerical and analytical
olutions using the formula 

1 √ 

L 

| h num 

− h ana | = 

1 √ 

L 

[∫ L 

x=0 
{ h num 

( x, t ) − h ana ( x, t ) } 2 dx 

]1 / 2 

(48

here h num 

( x, t ) and h ana ( x, t ) respectively denote the numer-
cal and analytical solutions. L is the range of spatial coor-
inate in which the L2 norm is calculated. The maximum
ifference between the analytical and numerical solutions in
he domain 0 ≤ x ≤ L is determined using Tchebycheff norm,
efined as follows: 

 h num 

− h ana ‖ = max | h num 

− h ana | (49) 

0 ≤ x ≤ L 
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Fig. 3. RPD between analytical and numerical solution under linear boundary condition. Rise in the stream-stage is: (a) 100% of h i , and (b) 200% of h i . 

Table 1 
Numerical values of RPD between analytical and numerical solutions under nonlinear boundary condition. Values of t are in days. 

x (m) RPD for 100% rise RPD for 200% rise 

t = 2 t = 5 t = 10 t = 15 t = 30 t = 2 t = 5 t = 10 t = 15 t = 30 

0 –0.02 –0.04 –0.06 –0.09 –0.12 –0.06 –0.06 –0.08 –0.13 –0.19 
25 0.06 0.54 0.59 0.26 –0.23 0.26 1.87 1.28 0.43 –0.41 
50 0 0.21 1.17 1.17 0.08 0.01 1.07 3.97 2.68 0.01 
75 0 0.02 0.64 1.50 0.81 0 0.11 3.25 5.38 1.35 
100 0 0 0.15 0.87 1.60 0 0.01 0.9 4.52 3.77 
125 0 0 0.02 0.29 1.86 0 0 0.13 1.77 6.24 
150 0 0 0 0.07 1.36 0 0 0.01 0.41 6.47 

 

 

 

 

 

 

 

t  

s  

h  

a  

i  

t  

c  

a  

b  
5. Discussions of results 

Applications of the new solutions developed in this
study are illustrate with the help of a numerical example
with aquifer parameters as: K = 2.5 m/day, S = 0.25, β = 5 °,
k = 0.25 m/day and b = 1 m. In order to show the effective-
ness of the solutions developed in this study, two cases of
large variations in the stream-stage are considered. In the
first case, the rise in stream water level is 100% of the ini-
ial level ( h i = 10 m, h f = 20 m, λ= 0.2 day 

−1 ), while in the
econd case, the rise is 200% of the initial level ( h i = 10 m,
 f = 30 m, λ= 0.2 day 

−1 ). Mean saturated depth h avg of the
quifer is determined using analogy of Marino [16] with an
terative formula h avg = ( h t + h i )/2. Spatial and temporal dis-
ributions of water head obtained from analytical solution are
ompared with numerical solution and found to be in good
greement during initial stages. As time progresses, difference
etween these solutions grows. For quantitative assessment of
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Table 2 
Numerical values RPD between analytical and numerical solutions under linear boundary condition. Values of t are in days. 

x (m) RPD for 100% rise RPD for 200% rise 

t = 2 t = 5 t = 10 t = 15 t = 30 t = 2 t = 5 t = 10 t = 15 t = 30 

0 0.25 0.83 1.04 0.94 0.59 0.88 2.04 2.05 1.70 1.03 0.25 
25 0.12 1.81 3.79 3.78 2.48 0.54 6.25 9.03 7.65 4.41 0.12 
50 0 0.44 3.37 5.17 4.49 0.01 2.00 11.42 13.33 8.71 0 
75 0 0.04 1.32 3.92 6.01 0 0.18 5.94 13.73 13.39 0 
100 0 0 0.28 1.78 6.25 0 0 1.41 8.01 16.86 0 
125 0 0 0.04 0.53 5.03 0 0 0.20 2.72 16.9 0 
150 0 0 0 0.12 3.15 0 0 0.02 0.62 13.10 0 

0

0.5

1

1.5

2

2.5
a

b

1 2 5 10 15 30

L2
 N

or
m

t (d)

200% Rise

100% Rise

0

0.5

1

1.5

2

2.5

3

3.5

1 2 5 10 15 30

T 
N

or
m

t (d)

100% Rise

200% Rise

Fig. 4. Comparison of analytical and numerical solutions under linear (dotted 
curves) and nonlinear (continuous curves) boundary condition (a) L2 norm, 
and (b) Tchebycheff norm. 
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Fig. 5. Comparison of water head distribution predicted by the solutions of 
this study (continuous curves) and Bansal et al. [8] (dotted curves) for (a) 
100% rise, and (b) 200% rise. 
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he difference between analytical and numerical solutions, we
se Relative Percentage Difference (RPD) which is defined
s follows: 

PD = 

h num 

− h ana 

h num 

× 100 (50) 

For both the aforementioned cases, RPD is determined
n the range 0 ≤ x ≤150 at t = 1, 2, 5, 10, 15 and 30 days
 Fig. 2 and Table 1 ). To demonstrate the efficiency of the
olution developed in this study, RPD is also determined for
he same set of aquifer parameters using solutions of Bansal
t al. [8] ( Fig. 3 and Table 2 ). 
It is clear from these figures and tables that the overall
PD between analytical and numerical solutions of this study

s much lesser than that of Bansal et al. [8] , indicating higher
evel of accuracy of the present results as compared to Bansal
t al. [8] mainly due to linearization in term of h 

2 instead of
 . For 100% and 200% rise in the stream stage, the maximum
PD yielded by the present solution are merely 1.85% and
.9% respectively, whereas in case of Bansal et al. [8] , these
alues are more than 6.5% and 17.4% respectively. One clear
rend that can be observed from Figs. 2 and 3 is that the peak
f RPD rises and drifts toward higher values of x as time t
ncreases. Higher accuracy of current results is also reflected
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in the plots of L2 and Tchebycheff norms presented in Fig.
4 . The integral involved in the right-hand side of Eq. (48) is
evaluated using trapezoidal rule in the range 0 ≤ x ≤150 m. 
Distribution of water head in the unconfined sloping
quifer predicted by the solutions of this study and that of
ansal et al. [8] is plotted in Fig. 5 (a) (for 100% rise) and
ig. 5 (b) (for 200% rise). It can be concluded from these fig-
res that the analytical solutions based on the linear boundary
ondition predict significantly lower water table than that the
orresponding results with non linear boundary condition. 

Another major limitation of linear boundary conditions
s that it yields acceptable results only when the streambed
eakance ratio, r = ( K b cos 2 β)/ k , is small. It is highlighted
n Bansal et al. [8] that when the value of r is large, the
ifference between analytical and numerical solutions grows
ignificantly. In Fig. 6 , the RPD between analytical and nu-
erical solutions of this study for r = 10, 15, 20, 25, 30 and

5 at t = 15 days is presented. 
It can be observed from Fig. 6 that the differences between

nalytical and numerical solutions are very small. Moreover,
he RPD decreases as r increases, establishing the accuracy
f present solutions. Average distance between solutions (L2
orm presented in Fig. 7 (a)) decreases almost linearly; how-
ver, the maximum difference (Tchebycheff norm, presented
n Fig. 7 (b)) increases with r . 

. Conclusions 

Analytical solutions developed by Bansal et al. [8] for es-
imation of stream–aquifer interaction in presence of vertical
edimentary layer are based on a linearized boundary condi-
ion, and exhibit significant limitations when the stream-stage
ariations and streambed leakance are large. To overcome
hese limitations, new analytical solutions are developed and
ested by incorporating the effects of nonlinear boundary con-
ition for estimation of surface–groundwater interaction. The
olution methodology uses Laplace transform to derive sys-
em response functions for water head distribution, flow rate
nd volumetric exchange. It is shown in the study that these
esults are consistent with numerical solution even when the
tream-stage variations are extremely large (200% of the ini-
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ial depth), and the streambed leakance ratio is high ( r ≤40).
ater table fluctuations predicted in this study are compared
ith that of Bansal et al. [8] and observed that except for the

nitial time duration, the results predicted by the Bansal et al.
8] are significantly lower than the actual values. 
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