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Abstract 

In this work we study a new integrable nonlocal modified Korteweg–de Vries equation (mKdV) which arises from a reduction of the 
AKNS scattering problem. We use a variety of distinct techniques to determine abundant solutions with distinct physical structures. We show 

that this nonlocal equation possesses a family of traveling solitary wave solutions that include solitons, kinks, periodic and singular solutions. 
© 2017 Published by Elsevier B.V. on behalf of Shanghai Jiaotong University. 
This is an open access article under the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Ablowitz and Musslimani [1] introduced a new integrable
onlocal nonlinear Schrödinger equation given as 

q t (x, t ) = q xx ± 2q 

2 (x , t ) q 

∗(−x , t ) , (1)

here ∗ denotes complex conjugate. The nonlocality occurs
here one of the nonlinear terms, namely q 

∗(−x, t ) has the
ependent variable evaluated at −x instead of x [1] . A de-
ailed comparison between the nonlocal Schrödinger equation
ith the classical Schrödinger equation was given in [1] . The
onlocal nonlinear Schrödinger equation (1) describes wave
ropagation in nonlinear PT symmetric media. 

Recently, a new integrable nonlocal modified Korteweg–de 
ries equation was given in [1,2] which reads 

 t (x, t ) + 6 u(x, t ) u(−x , −t ) u x (x , t ) + u x x x (x, t ) = 0, (2)

hich arises from a reduction of the AKNS scattering prob-
em. This in turn shows that Eq. (2) is Lax integrable [1,2] .
he nonlocality shows up as sign inversions [1] in both x and
 . Recall that a nonlocal equation is a relation for which the
pposite happens. When u(−x, −t ) = u(x, t ) , then Eq. (2) re-
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uces to its standard counterparts mKdV [1] , which is given
y 

 t (x, t ) + 6 u 

2 (x , t ) u x (x , t ) + u x x x (x, t ) = 0. (3)

It is interesting to note that the KdV, mKdV, and
chrödinger equations are all integrable. Among the intrigu-

ng and relevant features of these equations are the multiple
oliton solutions and infinite number of conserved quanti-
ies they possess. In [1,2] , it was shown that the nonlocal
chrödinger (NLS) equation and the nonlocal modified KdV
quation possess new properties which are different from
he ones of classical equations. In [1] , a detailed study of
he inverse scattering transform of the nonlocal Schrödinger
quation was carried out, where explicit time-periodic soliton
olutions were obtained. 

In [2] , the Darboux transformation for the nonlocal mKdV
quation was constructed, and different kinds of exact solu-
ions including soliton, kink, antikink, complexiton, rogue-
ave solution, and nonlocalized solution with singularities
ere obtained. The findings in [1,2] have stimulated research
ork in nonlocal differential equations. 
Nonlinear phenomena appear in a wide variety of scien-

ific applications such as plasma physics, quantum physics,
olid-state physics, optical fibers, chemistry, biology and fluid
ynamics. The determination of exact solutions can greatly
acilitate the features of the examined equations. Various
iversity. This is an open access article under the CC BY-NC-ND license. 
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methods [3–20] have been used to handle nonlinear equations.
Examples of the methods that have been used are the Hirota
bilinear method, the Bäcklund transformation method, Dar-
boux transformation, Pfaffian technique, the inverse scattering
method, the Painlevé analysis, the generalized symmetry
method, the subsidiary ordinary differential equation method
(sub-ODE for short), the coupled amplitude-phase formula-
tion, sine-cosine method, sech-tanh method, the mapping and
the deformation approach, and many other methods. 

In this work, the equation that we will be studying is the
nonlocal modified KdV equation (2) . We aim to use a variety
of distinct techniques aiming to formally derive new traveling
wave solutions, such as solitons, kinks, periodic, and singular.

2. A soliton solution 

To determine a soliton solution for the nonlocal mKdV (2) ,
we substitute 

u(x, t ) = e θ = e kx−ct , (4)

into the linear terms of (2) to find the dispersion relation as

c = k 3 . (5)

Consequently, the dispersion variable becomes 

θ = k x − k 3 t . (6)

We next use the transformation 

u(x, t ) = R ( arctan (θ ) ) x , (7)

where R is a constant that will be determined. Substituting
(7) in (2) , and solving for R , we find that single soliton so-
lution exists only if 

R = ±2. (8)

This in turn gives the following single soliton solution 

u(x, t ) = ± 2k e k x−k 3 t 

1 + e 2kx−2k 3 t 
. (9)

3. A kink solution 

Proceeding as before, we find the dispersion relation as 

c = k 3 . (10)

Consequently, the dispersion variable becomes 

θ = k x − k 3 t . (11)

We next use the transformation 

u(x, t ) = R ( ln (1 + θ ) ) x , (12)

where R is a constant that will be determined. Substituting
(12) in (2) , and solving for R , we find that single kink solution
exists only if 

R = ±1 , (13)
hich gives the following single kink solution 

(x, t ) = ± k e k x−k 3 t 

1 + e k x−k 3 t 
. (14)

t is interesting to know that the standard mKdV equation
oes not give kink solutions. This confirms the conclusions
ade in [1,2] that the nonlocal mKdV equation gives different

olutions compared to the classical mKdV equation. 

. Other kink and singular solutions 

To derive a variety of other kink and singular solutions,
e first assume that the solution takes the form 

(x, t ) = 

1 

a 0 + a 1 e kx−ct 
, (15)

here a 0 and a 1 are constants to be determined. Substituting
his form in (2) , and solving resulting equation we obtain the
ollowing set of solutions for a 0 and a 1 : 

 0 = ±1 

k 
, a 1 = ±1 

k 
, c = k 3 , 

 0 = ∓1 

k 
, a 1 = ±1 

k 
, c = k 3 , (16)

hich gives the following kink solutions 

(x, t ) = ± k 

1 + e k x−k 3 t 
, (17)

nd the singular solutions 

(x, t ) = ∓ k 

1 − e k x−k 3 t 
, (18)

espectively. 
However, the obtained result in this section can be gener-

lized to the following assumption 

(x, t ) = 

1 

a 0 + a 1 e nkx−nct 
. (19)

roceeding as before, we obtain the following set for a 0 and
 1 : 

 0 = ± 1 

nk 
, a 1 = ± 1 

nk 
, c = n 

3 k 3 , 

 0 = ∓ 1 

nk 
, a 1 = ± 1 

nk 
, c = n 

3 k 3 . (20)

onsequently, we obtain the generalized kink solutions 

(x, t ) = ± nk 

1 + e k x−n 3 k 3 t 
, (21)

nd the generalized singular solutions 

(x, t ) = ∓ nk 

1 − e nkx−n 3 k 3 t 
, (22)

espectively, where n is finite, and n ≥ 1. 
The obtained kink and singular results are generated for

he nonlocal mKdV equation (2) , whereas the standard mKdV
quation does not possess these kinds of solutions. 
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. Singular solutions by using rational hyperbolic 
unctions 

To derive another set of solutions, we use the assumption

(x, t ) = 

sinh (kx − ct ) 

a 0 + a 1 cosh (kx − ct ) 
. (23) 

ubstituting this assumption in (2) , and solving the resulting
quation we obtain the following for a 0 and a 1 : 

 0 = ±2 

k 
, a 1 = ±2 

k 
, c = −1 

2 

k 3 , 

 0 = ∓2 

k 
, a 1 = ±2 

k 
, c = −1 

2 

k 3 , (24) 

hich gives the following kink and singular solutions 

(x, t ) = ± k sinh (k x + 

1 
2 k 

3 t ) 

2(1 + cosh (k x + 

1 
2 k 

3 t )) 
, 

(x, t ) = ∓ k sinh (k x + 

1 
2 k 

3 t ) 

2(1 − cosh (k x + 

1 
2 k 

3 t )) 
, (25) 

espectively. 
In a like manner, we can assume that the solution takes

he form 

(x, t ) = 

cosh (kx − ct ) 

a 0 + a 1 sinh (kx − ct ) 
. (26) 

ubstituting this assumption in (2) , and solving resulting
quation we obtain 

 0 = 0, a 1 = ±1 

k 
, c = −2k 3 , (27)

hich gives the following singular solutions 

(x, t ) = ±k coth (k x + 2k 3 t ) . (28)

The obtained solutions come from this newly integrable
onlocal mKdV equation (2) . However, the standard mKdV
quation does not give any of the obtained solutions. 

. Periodic solutions 

To derive periodic wave solutions, we use the following
ssumption for u ( x , t ) in the form 

(x, t ) = 

sin (kx − ct ) 

a 0 + a 1 cos (kx − ct ) 
. (29) 

ubstituting this assumption in (2) , and solving resulting
quation we obtain the following set for a 0 and a 1 : 

 0 = ±2 

k 
, a 1 = ±2 

k 
, c = 

1 

2 

k 3 , 

 0 = ∓2 

k 
, a 1 = ±2 

k 
, c = 

1 

2 

k 3 , (30) 
hich gives the following periodic and singular solutions 

(x, t ) = ± k sin (k x − 1 
2 k 

3 t ) 

2(1 + cos (k x − 1 
2 k 

3 t )) 
, 

(x, t ) = ∓ k sin (k x − 1 
2 k 

3 t ) 

2(1 − cos (k x − 1 
2 k 

3 t )) 
, (31) 

espectively. 
In a like manner, we can assume that the solution takes

he form 

(x, t ) = 

cos (kx − ct ) 

a 0 + a 1 sin (kx − ct ) 
. (32) 

roceeding as before, we obtain the following set for a 0 and
 1 : 

 0 = 0, a 1 = ±1 

k 
, c = 2k 3 , (33)

hich gives the following singular solutions 

(x, t ) = ±k cot (k x − 2k 3 t ) . (34)

. More periodic solutions 

To derive periodic wave solutions, we set 

(x, t ) = a 0 + a 1 tan (kx − ct ) , (35)

or the solution of nonlocal mKdV equation. Proceeding as
efore, we obtain 

 0 = β, βis any real number , a 1 = ±k, c = 6 β2 k + 2k 3 , 

(36) 

hich gives the following periodic solutions 

(x, t ) = β ± k tan (kx − (6 β2 k + 2k 3 ) t ) . (37)

In a like manner, we can derive the singular solution 

(x, t ) = β ± k cot (kx − (6 β2 k + 2k 3 ) t ) , (38)

. Discussion 

In this work we have performed a detailed study on the
ntegrable nonlocal modified KdV equation. We used a vari-
ty of techniques to determine abundant solutions. Moreover,
e showed that this equation possesses a family of traveling

olitary wave solutions that include, soliton, kink, periodic,
nd singular solutions. We showed that the nonlocal modified
dV equation, where the nonlocality shows up as sign inver-

ions in both x and t , gives different solutions compared to
he classical mKdV equation. The integrable nonlocal mod-
fied KdV equation is rich of distinct solutions of different
hysical structures. 
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