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Abstract 

Using linear water-wave theory, wave scattering by a horizontal circular cylinder submerged in a three-layer ocean consisting of a layer 
of finite depth bounded above by finite depth water with free surface and below by an infinite layer of fluid of greater density is considered. 
The cylinder is submerged in either of the three layers. In such a situation time-harmonic waves with given frequency can propagate with 
three different wave numbers. Employing the method of multipoles the problem is reduced to an infinite system of linear equations which are 
solved numerically by standard technique after truncation. The transmission and reflection coefficients are obtained and depicted graphically 
against the wave number for all cases. In a two-layer fluid there are energy identities that exist connecting the transmission and reflection 
coefficients that arise. These energy identities are systematically extended to the three-fluid cases which are obtained. 
© 2016 Shanghai Jiaotong University. Published by Elsevier B.V. 
This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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. Introduction 

The propagation of waves in layered fluids is a well-
ocumented phenomenon such a situation may arise when
he continuous density profile of an ocean or atmosphere has
een approximated to one made up of multiple horizontal
ayers of constant density. Typically system of two or three
ayers is considered in literature of water wave theory. Stokes
1] first investigated wave propagation in a two-layer fluid
ith a free surface and an interface. For such a two-layer
uid it is known that time-harmonic waves with a given fre-
uency can propagate with two different wave numbers [2] .
inton and McIver [3] developed a general theory for two
imensional wave propagation in such a two-layer fluid. Due
o the presence of an obstacle, an incident wave of a particu-
ar wave number gets reflected and transmitted into waves of
oth the wave numbers, so that on scattering by an obstacle,
ransfer of energy from one mode to another take place. The
roblem arose in connection with modeling an underwater
ipe bridge across the Norwegian fjords consisting of a layer
∗ Tel.: + 91 9433567457 (mobile). 
E-mail address: dilipdas99@gmail.com . 
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f fresh water on the top of a deep layer of salt water. Cadby
nd Linton [4] studied three-dimensional wave scattering and
adiation by a submerged sphere in a two-layer fluid by us-
ng the method of multipoles and Linton and Cadby [5] also
nvestigated the problem of scattering of obliquely incident
aves by a long circular cylinder in a two-layer fluid. Vari-
us aspect of wave motion has been analyzed in the two-layer
uids [6–9] . 

A more general class of problems in two-layer fluid
edium is the wave interaction with floating elastic plate or
oating ice-sheet, which are of ocean engineering interest.
he use of floating elastic plate in the hydroelastic analysis
f very large floating structure and the wave interaction with
oating ice-sheet is well known in the literature. Das and
andal [10,11] studied the water wave scattering by a hori-

ontal circular cylinder in two-layer fluid with an ice-cover.
as [12] considered the solution of the dispersion equation

or internal waves in two-layer fluid with an ice-cover and
lso Das and Mandal [13] investigated the water wave radia-
ion by a sphere in two-layer fluid with an ice-cover. Recently
as and Thakur [14] studied the wave scattering by a sphere

n the two-layer fluid with an ice-cover. 
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More recently, however, interest has been extended to bod-
ies which are immersed in three-layer fluids, each fluid hav-
ing a different density. Some interesting results also have been
published for the case of three-layer fluids. This is a particular
interest in understanding wave transformation in the presence
of floating or submerged structures in continental shelves and
estuaries. Such sharp density gradients can be generated in the
ocean due to gravitational settling of sediments carried by a
fluids or by solar heating of the upper layer or in an estuary or
a fjord in to which fresh river water flows over oceanic water,
which is more saline and consequently heavier. Michallet and
Dias [15] have considered waves in three-layer systems that
contain rigid horizontal walls above the upper most fluid and
below the lower most one. The linear stability for three-layer
fluid has been analyzed by Taylar [16] . Chakrabarti et al.
[17] studied the trapped modes of waves in three-layer fluid
in a channel when a cylinder is totally submerged in the lower
layer fluid. Chen and Forbes [18] investigated the steady pe-
riodic waves in a three-layer fluid with shear in the middle
layer. Recently Mondal and Sahoo [19] studied wave structure
interaction problems in three-layer fluids. Less work has been
done on the study of wave structure interaction problems in
the three-layer fluid in which the upper surface of the upper
fluid is free and having two interfaces. In this situation, there
are three possible linear wave systems at a given frequency,
each with different wave number, one mode corresponds to an
oscillation which is mainly confined to the upper fluid, sec-
ond mode may be thought of as an oscillation in the middle
fluid and the third mode corresponds to an oscillation which
is confined to the lower layer fluid. For an arbitrary but stable
density ratio, there is the possibility that some of the energy
may be transferred from one mode to another if the wave
field interacts with a body. Thus the three-layer model may
be considered as a more accurate realization of the two-layer
model, which is being considered in various models. 

The wave scattering for an arbitrary, two-dimensional con-
figuration of horizontal circular cylinder in a three-layer fluid
are considered here. Under the linear theory of water waves,
the various hydrodynamic relations which connect various
scattering and radiation quantities have been derived by many
authors over the years. These relations may be obtained by
applying Greens theorem to two different potentials and a
systematic derivation of all the first-order relations is given
by Newman [20] in a single-layer fluid. Also all the relations
for a two-layer fluid are systematic derived from Greens the-
orem [3–5,11,21] . Here in Section 2 , following the approach
of Newman [20] , the relations energy identities for a three-
layer fluid are derived from Green’s theorem which is used
as a check on the corrections of all numerical results for
the reflection and transmission coefficients. In Section 2.1 ,
the wave scattering by a single, horizontal circular cylinder
which is totally contained in the lower layer fluid is inves-
tigated. It is well known [3] that there is zero reflection of
waves of any frequency by a circular cylinder submerged in a
lower layer of a two-layer fluid and it is interesting to investi-
gate the corresponding situation in the three-layer fluid. This
analysis is slightly more complicated for the three-layer fluid
ecause there are three possible reflected waves of different
ave numbers to consider. However, by using the multipoles

xpansion, it is found that regardless of the wave number of
he incident wave, there is no reflection of energy into either
ode. The transmission coefficients are investigated numer-

cally which the aid of the energy identity relations derived
n Section 2 . The analysis is repeated in Section 2.2 for a
ircular cylinder which is considered in the middle layer and
ection 2.3 for a circular cylinder in the upper layer. Reflec-

ions of wave are found to occur in both the cases. Numerical
stimates for the reflection and transmission coefficients are
btained and are depicted graphically against the wave num-
er in a number of figures in both the cases and also the re-
ection and transmission coefficients are investigated numer-

cally which the aid of the energy identity relations derived
n Section 2 . 

. Scattering problem in a three-layer 

It is here concerned with irrotational motion in three su-
erposed non-viscous incompressible fluids under the action
f gravity, neglecting any effect due to surface tension at the
nterfaces of the three fluids, the upper being of finite depth H 

nd the middle layer being of finite depth h, while the lower
ayer being infinitely deep. The upper, middle and lower layer
uids have densities ρ1 , ρ2 and ρ3 ( ρ1 < ρ2 < ρ3 ) , respec-

ively. Cartesian co-ordinates are chosen such that (x, z) -plane
oincides with the undisturbed interface between the middle
nd lower layer (ML) fluids. The y-axis points vertically up-
ards with y = 0 as the mean position of the interface of the
L fluid, y = h(> 0) as the mean position of the interface

f the upper and middle (UM) fluid and y = H + h(> 0) as
he mean position of the linearized free surface. Under the
sual assumptions of linear water wave theory a velocity po-
ential can be defined for waves in the form Re { φ(x, y) e −iσ t }
here φ(x, y) is a complex valued potential function, σ is the

ngular frequency. 
The upper fluid, h < y < H + h, will be referred to as re-

ion I ,the middle fluid, 0 < y < h, will be referred to as re-
ion I I , while the lower fluid, y < 0, will be referred to as
egion I I I . The potential in the upper fluid will be denoted
y φI and that in the middle and lower fluids by φII , φI I I 

espectively. φI , φII and φI I I satisfied Laplace’s equation 

 

2 φi = 0, i = I , I I , I I I . (1)

Linearized boundary conditions on the interfaces and at
he free surface are 

y 
I = φy 

II on y = h, (2)

 1 ( φy 
I − K φI ) = φy 

II − K φII on y = h, (3)

y 
II = φy 

I I I on y = 0, (4)

 2 ( φy 
II − K φII ) = φy 

I I I − K φI I I on y = 0, (5)

here 

 1 = 

ρ1 

ρ2 
(< 1) and s 2 = 

ρ2 

ρ3 
(< 1) , 
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I − K φI = 0, on y = H + h, (6)

here K = σ 2 /g. The boundary conditions ( 2 ) and ( 4 ) are ob-
ained from the continuity of normal velocity at the interface
etween UM and ML fluids respectively, while conditions
 3 ) and ( 5 ) are obtained from the continuity of pressure at
he interface between UM and ML fluids respectively. Also
ondition at large depth is 

 φI I I → 0 as y → −∞ . (7)

In three-layer fluid progressive waves have the form (ex-
ept for a multiplicative constant) 
I = e ±ikx { (K + k) e k(y−h−H ) + (K − k) e −k(y−h−H ) } , (8)

II = e ±ikx { M 1 e 
k(y−h) + M 2 e 

−k(y−h) } , (9)

I I I = e ±ikx+ ky { M 1 e 
kh − M 2 e 

−kh } , (10) 

here 

 1 , 2 = 

k ± K 

2K 

[ ±{ (K ± k) − s 1 (k ∓ K ) } e ∓kH 

∓ (k ∓ K )(1 − s 1 ) e 
±kH ] , 

here k satisfies the dispersion equation 

 (k) ≡ (k − K )[(k + K ) { (k + K σ1 ) e 
−2kH − (k − K ) } e −2kh 

− (k − K σ2 ) { (k + K ) e −2kH − (k − K σ1 ) } ] = 0, (11) 

here 

1 = 

1 + s 1 
1 − s 1 

and σ2 = 

1 + s 2 
1 − s 2 

. 

It follows that the dispersion Eq. (11) has exactly three
ositive real roots K , k 1 and k 2 ( k 2 > k 1 ) (say), k 1 , k 2 satisfy
he equation 

(k) = (k + K ) { (k + K σ1 ) e 
−2kH − (k − K ) } e −2kh 

−(k − K σ2 ) { (k + K ) e −2kH − (k − K σ1 ) } = 0. (12) 

Thus for the case k = K , progressive waves are of the form

I = φII = φI I I = 2K e ±iK x+ K (y−h−H ) . (13)

Also for the case k = k j , ( j = 1 , 2) progressive waves are
hus 
I = e ±i k j x { (K + k j ) e 

k j (y−h−H ) + (K − k j ) e 
−k j (y−h−H ) } , (14)

II = e ±i k j x { M 

j 
1 e 

k j (y−h) + M 

j 
2 e 

−k j (y−h) } , (15)

I I I = e ±i k j x+ k j y { M 

j 
1 e 

k j h − M 

j 
2 e 

−k j h } , (16) 

here 

 

j 
1 , 2 = 

k j ± K 

2K 

[ ± { (K ± k j ) − s 1 ( k j ∓ K ) } e ∓k j H 

∓ ( k j ∓ K )(1 − s 1 ) e 
±k j H 

]
. 

Waves of all wave numbers can exist and they can propa-
ate in either direction. In any wave scattering problem there-
ore, the far-field will take the form of incoming and outgoing
aves at each of the wave numbers K, k j ( j = 1 , 2) . It is given
y 
I ,I I ,I I ∼ A 

±e ±iKx+ Ky + B 

±e ±i k 1 x (g 

1 
1 (y) , g 

1 
2 (y) , e k 1 y ) 

+ C 

±e ±i k 2 x (g 

2 
1 (y) , g 

2 
2 (y) , e k 2 y ) + D 

±e ∓iKx+ Ky 

+ E 

±e ∓i k 1 x (g 

1 
1 (y) , g 

1 
2 (y) , e k 1 y ) 

+ F 

±e ∓i k 2 x (g 

2 
1 (y) , g 

2 
2 (y) , e k 2 y ) , (17) 

s x → ±∞ , where 

 

j 
1 (y) = 2 

( k j + K ) e −k j (2h+2H−y) + ( k j − K ) e −k j y 

(1 − s 1 )(1 − σ2 ) { ( k j + K ) e −2 k j H − ( k j − K σ1 ) } , 
j = 1 , 2, 

 

j 
2 (y) = 2 

( k j − K σ2 ) e k j y + ( k j − K ) e −k j y 

K (1 − σ2 ) 
, j = 1 , 2. 

Convenient shorthand for ( 17 ) is 

∼ { A 

−, B 

−, C 

−, D 

−, E 

−, F 

−; A 

+ , B 

+ , C 

+ , D 

+ , E 

+ , F 

+ } . 
(18) 

In the case of a single-layer fluid, for any scattering prob-
em, the reflection and transmission coefficients satisfy the
nergy identity, which is generally used as a partial check on
he correctness of the analytical or computed values of these
oefficients. For a two-layer fluid with a free surface, there
xists two energy identities corresponding to scattering of in-
ident waves of two different wave numbers [3] . These energy
dentities were derived by appropriate uses of Green’s integral
heorem. For a three-layer fluid with a free surface, energy
dentities are derived here by using the appropriate Green’s
ntegral theorem. These identities are used here as partial nu-
erical checks for all the data points in obtaining the various

urves for the reflection and transmission coefficients. 
There are a number of bodies in a three-layer fluid is con-

idered here, some in the upper layer, some in the middle
ayer, some in the lower layer and some standing the UM
nd ML. The boundaries of these bodies lying in the upper
uid will be denoted by B I , and those in the middle and lower
uids by B II and B I I I respectively. Assume that φ and ψ are
olutions to two different problems, with 

∂φ

∂n and 

∂ψ 

∂n given in
he boundaries B I , B II and B I I I , with the far field form of φ
iven by ( 18 ) and 

∼ { M 

−, N 

−, P 

−, Q 

−, R 

−, S 

−; M 

+ , N 

+ , P 

+ , Q 

+ , R 

+ , S 

+ } . 
(19) 

To obtain the energy identities, apply Green’s integral the-
rem, which for harmonic functions φ and ψ takes the form

 

S 

(
φ

∂ψ 

∂n 

− ψ 

∂φ

∂n 

)
ds = 0, (20) 

here S denotes the boundary of the fluid region completely
ontained in one of the fluid layers and ∂ /∂ n is the derivative
ith respect to the outward normal. 
First we choose S in ( 20 ) to be the boundary of the region

n the upper fluid bounded internally by x = ±X, h ≤ y ≤
 + H ; y = h + H, | x| ≤ X ; y = h, | x| ≤ X and externally by
he body boundary B I , and ultimately make X → ∞ , and next
o be the boundary of the region in the middle fluid bounded
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internally by x = ±X, 0 ≤ y ≤ h; y = 0, | x| ≤ X ; y = h, | x| ≤
X and externally by the body boundary B II , and ultimately
make X → ∞ , and finally to be the boundary of the region
in the lower fluid bounded internally by x = ±X, −Y ≤ y ≤
0; y = −Y , | x| ≤ X ; y = 0, | x| ≤ X and externally by the body
boundary B I I I , and ultimately make both X, Y → ∞ . 

After using the results 

s 1 , 2 

(
φI ,I I ∂ 

∂y 
ψ 

I ,I I − ψ 

I ,I I ∂ 

∂y 
φI ,I I 

)

= φI I ,I I I ∂ 

∂y 
ψ 

I I ,I I I − ψ 

I I ,I I I ∂ 

∂y 
φI I ,I I I 

at the interfaces between UM and ML respectively and also
use the results 

s 1 s 2 

∫ h+ H 

h 
g 

1 , 2 
1 (y) e Ky dy + s 2 

∫ h 

0 
g 

1 , 2 
2 (y) e Ky dy 

+ 

∫ 0 

−∞ 

e (K+ k 1 , 2 ) y dy = 0, 

s 1 s 2 

∫ h+ H 

h 
g 

1 
1 (y) g 

2 
1 (y ) dy + s 2 

∫ h 

0 
g 

1 
2 (y ) g 

2 
2 (y ) dy 

+ 

∫ 0 

−∞ 

e ( k 1 + k 2 ) ydy = 0, 

then obtain after some lengthy algebra ∫ 

B I 

s 1 s 2 

(
φI ∂ ψ 

I 

∂n 

− ψ 

I ∂ φ
I 

∂n 

)
ds 

+ 

∫ 

B II 

s 2 

(
φII ∂ ψ 

II 

∂n 

− ψ 

II ∂ φ
II 

∂n 

)
ds 

+ 

∫ 

B I I I 

(
φI I I ∂ ψ 

I I I 

∂n 

− ψ 

I I I ∂ φ
I I I 

∂n 

)
ds 

= J K ( A 

+ Q 

+ − D 

+ M 

+ + A 

−Q 

− − D 

−M 

−) 

+ J k 1 ( B 

+ R 

+ − E 

+ N 

+ + B 

−R 

− − E 

−N 

−) 

+ J k 2 ( C 

+ S 

+ − F 

+ P 

+ + C 

−S 

− − F 

−P 

−) , (21)

where 

J K = i 

[
1 + 2K s 2 

(
s 1 

∫ h+ H 

h 
e 2Ky dy + 

∫ h 

0 
e 2Ky dy 

)]
, 

J k j = i 

[
1 + 2 k j s 2 

(
s 1 

∫ h+ H 

h 
(g 

1 
j (y)) 

2 
dy + 

∫ h 

0 
(g 

1 
j (y)) 

2 
dy 

)]
, 

j = 1 , 2. 

Since φ and ψ are both the scattering potentials having
zero normal derivatives on all body boundaries then the left-
hand side of ( 21 ) is zero. If we consider the scattering of
waves by a fixed sets of bodies, then there are six problems
to consider. These are the scattering of an incident wave of
wavenumber K from x = −∞ , which will refer to as prob-
lem 1; the scattering of an incident wave of wavenumber K 

from x = ∞ (problem 2); the scattering of an incident wave
of wavenumber k 1 from x = −∞ (problem 3); the scattering
of an incident wave of wavenumber k 1 from x = ∞ (prob-
lem 4); the scattering of an incident wave of wavenumber
 2 from x = −∞ (problem 5); and the scattering of an in-
ident wave of wavenumber k 2 from x = ∞ (problem 6). In
ach case there may be reflected and transmitted waves of
ave numbers K, k 1 , k 2 . R K , R k 1 , R k 2 will be represent reflec-

ion coefficients corresponding to the wave of wavenumbers
, k 1 , k 2 respectively and similarly T K , T k 1 , T k 2 for the trans-
ission coefficients corresponding to the wave of wavenum-

ers K, k 1 , k 2 , respectively. Thus the six problems are charac-
erized using the notation of ( 18 ) by 

j ∼
{ 

R 

j 
K , R 

j 
k 1 
, R 

j 
k 2 
, δ

j 
1 , δ

j 
3 , δ

j 
5 ; T j 

K , T 
j 

k 1 
, T j 

k 2 
, δ

j 
2 , δ

j 
4 , δ

j 
6 

} 

, 

j = 1 , 2, 3 , 4, 5 , 6 , 

here δ j 
i is delta function. Applying ( 20 ) to φ j and its com-

lex conjugate φ j lead to 

 R 

j 
K | 2 + | T j 

K | 2 + J 1 
(
| R 

j 
k 1 
| 2 + | T j 

k1 | 2 
)

+ J 2 
(
| R 

j 
k 2 
| 2 + | T j 

k 2 
| 2 

)
= δ

j 
1 + δ

j 
2 + J 1 

(
δ

j 
3 + δ

j 
4 

)
+ J 2 

(
δ

j 
5 + δ

j 
6 

)
, 

j = 1 , 2, 3 , 4, 5 , 6 , (22)

here J 1 = J k 1 / J K and J 2 = J k 2 / J K . Relations ( 22 ) are called
he energy identities. 

Taking all possible pairs of the functions from φ j , ( j =
 , 2, 3 , 4, 5 , 6) and applying ( 18 ) leads to the relations 

T 1 K = T 2 K ; T 3 , 5 k 1 , 2 
= T 4, 6 

k 1 , 2 
; T 3 , 4 K = J 1 T 

2, 1 
k 1 

;
T 5 , 6 K = J 2 T 

2, 1 
k2 ; R 

3 , 4 
K = J 1 R 

1 , 2 
k 1 

; R 

5 , 6 
K = J 2 R 

1 , 2 
k 2 

;
 1 R 

5 , 6 
k 1 

= J 2 R 

3 , 4 
k 2 

; J 1 T 
5 , 6 

k 1 
= J 2 T 

4, 3 
k 2 

. 

Here it is observed that the transmission coefficient for the
ave of the same wavenumber as the incident wave is inde-
endent to the direction of incidence. This has a direct ana-
ogue in the non-stratified fluid case where it is well-known
hat the transmission coefficient is independent of the direc-
ion of the incident wave. 

Let E 

1 
R K be the reflected energy at wavenumber K due to

n incident wave of unit energy and wavenumber K from
 = −∞ and so on. Then it is convenient to define energies
s follows: 

E 

j 
R K , T K 

= | R 

j 
K , T 

j 
K | 2 , E 

j 
R k 1 , T k 1 

= J 1 | R 

j 
k 1 
, T j 

k 1 
| 2 , 

 

j 
R k 2 , T k 2 

= J 2 | R 

j 
k 2 
, T j 

k 2 
| 2 , j = 1 , 2, 

E 

j 
R K , T K 

= (1 / J 1 ) | R 

j 
K , T 

j 
K | 2 , E 

j 
R k 1 , T k 1 

= | R 

j 
k 1 
, T j 

k 1 
| 2 , 

 

j 
R k 2 , T k 2 

= ( J 2 / J 1 ) | R 

j 
k 2 
, T j 

k 2 
| 2 , j = 3 , 4, 

E 

j 
R K , T K 

= (1 / J 2 ) | R 

j 
K , T 

j 
K | 2 , E 

j 
R k 1 , T k 1 

= ( J 1 / J 2 ) | R 

j 
k 1 
, T j 

k 1 
| 2 , 

 

j 
R k 2 , T k 2 

= | R 

j 
k 2 
, T j 

k 2 
| 2 , j = 5 , 6 . 

The energy relations ( 22 ) then become 

E 

j 
R K 

+ E 

j 
T K 

+ E 

j 
R k 1 

+ E 

j 
T k 1 

+ E 

j 
R k 2 

+ E 

j 
T k 2 

= 1 , j = 1 , 2, 3 , 4, 5 , 6 . (23)

In terms of these energies, above equations imply 

 

3 , 5 
R K 

= E 

1 
R k 1 , 2 

, E 

4, 6 
R K 

= E 

2 
R k 1 , 2 

, E 

4, 6 
T K 

= E 

1 
T k 1 , 2 

, 
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3 , 5 
T K 

= E 

2 
T k 1 , 2 

, E 

5 , 6 
R k 1 

= E 

3 , 4 
R k 2 

, E 

6 , 5 
T k 1 

= E 

3 . 4 
T k 2 

. 

First and second relations can be stated as: the energy
eflected at wavenumber K due to an incident wave from
 = −∞ (+ ∞ ) of wavenumbers k 1 or k 2 are the same as
he energy reflected at wavenumbers k 1 or k 2 due to an inci-
ent wave from x = −∞ (+ ∞ ) of wave number K . Third and
ourth relations implies: the energy transmitted at wavenum-
er K due to an incident wave from x = −∞ (+ ∞ ) of
avenumbers k 1 or k 2 are the same as the energy transmit-

ed at wavenumbers k 1 or k 2 due to an incident wave from
 = −∞ (+ ∞ ) of wave number K. Finally last two relations
mplies: the energy reflected at wavenumber k 1 due to an in-
ident wave from x = −∞ (+ ∞ ) of wavenumber k 2 is the
ame as the energy reflected at wavenumber k 2 due to an
ncident wave from x = −∞ (+ ∞ ) of wave number k 1 and
he energy transmitted at wavenumber k 1 due to an incident
ave from x = −∞ (+ ∞ ) of wavenumber k 2 is the same as

he energy transmitted at wavenumber k 2 due to an incident
ave from x = −∞ (+ ∞ ) of wave number k 1 . For the case
f a body symmetric about x = 0 the direction of the incident
ave is immaterial, thus problems 2, 4 and 6 being equivalent

o the problems 1, 3 and 5, respectively. Thus the problems
, 3 and 5 are considered here. 

In problem 1 the form of the incident wave of wavenumber
 is 

inc = e iKx+ Ky , (24) 

n problem 3, incident plane wave φinc of wave number k 1 
as the form 

I ,I I ,I I I 
inc = e i k 1 x 

(
g 

1 
1 (y) , g 

1 
2 (y) , e k 1 y 

)
(25) 

nd in problem 5 the form of the incident wave of wavenum-
er k 2 are 

I ,I I ,I I I 
inc = e i k 2 x 

(
g 

2 
1 (y) , g 

2 
2 (y) , e k 2 y 

)
. (26) 

.1. Cylinder in the lower layer 

Let a horizontal circular cylinder of radius a have its axis
t y = f (< 0) and its generator runs parallel to z-axis. Polar
o-ordinates (r, θ ) are defined in the (x, y) -plane by 

 = r sin θ and y = f − r cos θ. (27)

It is convenient to distinguish those multipoles symmetric
bout x = 0 and those antisymmetric about this line. These
ill be denoted by φs 

n and φa 
n respectively. The form of those

unctions will be different in regions I , I I , I I I . 
Solutions of Laplace’s equation singular at y = f < 0 are

 

−n cos nθand r −n sin nθ, n ≥ 1 , and these have the integral
epresentations [22] 

cos nθ, sin nθ

r n 
= 

(−1) n,n+1 

(n − 1)! 

∫ ∞ 

0 
k n−1 e −k(y− f ) cos k x, sin k x dk .

It is straightforward to add suitable solutions of Laplace’s
quation to the symmetric and anti-symmetric multipoles so
hat the boundary conditions ( 2 )–( 7 ) are satisfied. We obtain 

Is,a 
n = 

(−1) n,n+1 

(n − 1)! 

∫ ∞ 

0 
k n−1 

(
A (k) e ky 

+ B(k) e −ky 
)

cos k x, sin k x dk , (28) 

I I s,a 
n = 

(−1) n,n+1 

(n − 1)! 

∫ ∞ 

0 
k n−1 

(
C(k) e ky 

+ D(k) e −ky 
)

cos k x, sin k x dk , (29) 

I I I s,a 
n = 

cos nθ, sin nθ

r n 

+ 

(−1) n,n+1 

(n − 1)! 

∫ ∞ 

0 
k n−1 E (k ) e ky cos k x, sin k x dk , (30) 

here 

 (k) = 4 

(k + K ) K 

2 e k f e −2k(h+ H ) 

(1 − s 1 )(1 − s 2 ) H (k) 
, B(k) 

= 4 

K 

2 e k f 

(1 − s 1 )(1 − s 2 ) h(k) 
, 

(k) = 2 

K (k + K ) e k f 
{
(k + K σ1 ) e −2k(h+ H ) − (k − K ) e −2kh 

}
(1 − s 2 ) H (k) 

,

(k) = 2 

K e k f 
{
(k + K ) e −2kH − (k − K σ1 ) 

}
(1 − s 2 ) h(k) 

, 

 (k) = e k f [(k + K σ2 ) 
{
(k + K σ1 ) e 

−2k(h+ H ) − (k − K ) e −2kh 
}

−(k − K ) 
{
(k + K ) e −2kH − (k − K σ1 ) 

}
] k + K/H ( k) ,

nd the path of integration is indented to pass beneath the
oles of the above six integrands at k = K, k = k 1 and k = k 2 .

The multipoles ( 30 ) can be expanded in terms of polar
o-ordinates and we obtain 

I I I s,a 
n = 

cos nθ, sin nθ

r n 
+ 

∞ ∑ 

m=0 

A nm 

r m cos m θ, sin m θ, (31)

here 

 nm 

= 

(−1) n+ m 

(n − 1)! m! 

∫ ∞ 

0 
k n+ m−1 E (k ) e ky dk . (32) 

The far-field form of the multipoles, in the lower layer, is
iven by 

I I I s,a 
n ∼ ( π i, ∓π) 

(−1) n 

(n − 1)! 
( K 

n−1 E 

K e ±iKx+ Ky 

+ k n−1 
1 E 

k 1 e ±i k 1 x+ k 1 y + k n−1 
2 E 

k 2 e ±i k 2 x+ k 2 y ) , (33) 

s x = ±∞ . Here E 

K , E 

k 1 , E 

k 2 are the residues of E (k) at
 = K, k = k 1 and k = k 2 respectively, given by 

E 

K = 2 K 

3 (1 + σ1 )(1 + σ2 ) e K f e −2K(h+ H ) 

h(K ) 
, 

 

k j = e k j f [( k j + K σ2 ) { ( k j + K σ1 ) e 
−2 k j (h+ H ) 

−( k j − K ) e −2 k j h − ( k j − K ) { ( k j + K ) e −2 k j H 

−( k − K σ )] k + K/H 

′ ( k ) , j = 1 , 2. 
j 1 j j 
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Fig. 1. Transmission coefficient due to a wave of wave number K incident 
on the cylinder in the lower layer. 
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2.1.1. Incident wave train of wavenumber K 

Let us consider the case of a wave train of wavenumber K 

and the incident wave potential is of the form φI I I 
inc = e iKx+ Ky ,

when expanded about r = 0, has the form 

φI I I 
inc = 

∞ ∑ 

m=0 

(−1) m 

m! 
K 

m r m e K f ( cos m θ − i sin m θ ) . (33)

To solve this scattering problem we write 

φK = φinc + 

∞ ∑ 

n=1 

a 

n 
(
a n φ

a 
n + b n φ

s 
n 

)
, (34)

where a n and b n are unknown constants to be determined. 
To solve for a n and b n the polar expansions of the mul-

tipoles ( 31 ) and the incident wave ( 33 ) are substituted into

( 34 ) and applying the body boundary condition 

∂φI I I 
K 

∂r = 0 on
r = a and using the orthogonal properties of the trigonomet-
ric functions, obtain two infinite systems of linear equations
for unknowns a n and b n which are 

( a m 

, b m 

) −
∞ ∑ 

n=1 

a 

n+ m A nm 

( a n , b n ) 

= (−i, 1) 
(−K a) m 

m! 
e K f , m = 1 , 2, ... (35)

Since left-hand sides of the systems of equations are of the
same nature and the right-hand sides of the systems differ by
a factor −i, we find that 

a n = −i b n . 

Eq. ( 35 ) is solved by truncation 5 × 5 systems to produce
the numerical results. 

Thus φI I I 
K is obtained as 

φI I I 
K = φI I I 

inc + 

∞ ∑ 

n=1 

a 

n b n 
(
φI I I s 

n − iφI I I a 
n 

)
. (36)

Using far-field form of the multipoles, in the lower layer,
then we get φI I I 

K ∼ φI I I 
inc , as x → −∞ . 

The far-field form for φI I I 
K in the lower fluid, can be written

as 

φI I I 
K 

∼
{ 

e iKx+ Ky + R 

K 
K e 

−iKx+ Ky + 

∑ 2 
j=1 R 

K 
k j 

e −i k j x+ k j y , as x → −∞ ,

T K K e 
iKx+ Ky + 

∑ 2 
j=1 T 

K 
k j 

e i k j x+ k j y , as x → ∞ . 

Using ( 36 ) we can obtain the reflection and transmission
coefficients: 

R 

K 
K = R 

K 
k 1 = R 

K 
k 2 ≡ 0, (37)

T K K = 1 + 2π i 
∞ ∑ 

n=1 

(−1) n 

(n − 1)! 
a 

n K 

n−1 E 

K b n , (38)

T K k j = 2π i 
∞ ∑ (−1) n 

(n − 1)! 
a 

n k n−1 
j E 

k j b n , j = 1 , 2. (39)

n=1 
.1.2. Incident wave train of wavenumber k j , j = 1 , 2
For an incident wave of wave number k j the mathematical

nalysis is the same except that K is to be replaced by k j in
he above equations. Also the far-field forms of φI I I 

k j 
in the

ower layer, can be written as 

I I I 
k j { 

e i k j x + k j y + R 

k j 
K e 

−iKx+ Ky + 

∑ 2 
s=1 R 

k j 
k s 

e −i k s x + k s y , as x → −∞
T 

k j 
K e iKx+ Ky + 

∑ 2 
s=1 T 

k j 
k s 

e i k s x+ k s y , as x → ∞ . 

Here also we find that the reflection coefficients R 

k j 
K , R 

k j 
k 1 

nd R 

k j 
k 2 

are identically zero. For the transmission coefficients
e obtain 

 

k j 
K = 2π i 

∞ ∑ 

n=1 

(−1) n 

(n − 1)! 
a 

n K 

n−1 E 

K b n , j = 1 , 2, (40)

 

k j 
k s 

= δ j 
s + 2π i 

∞ ∑ 

n=1 

(−1) n 

(n − 1)! 
a 

n k n−1 
s E 

k s b n , j = 1 , 2, s = 1 , 2. 

(41)

In a single layer fluid of infinite depth it is well known that
he reflection coefficient for a submerged horizontal cylinder
s zero. This was discover by Dean [23] . Also in a two-layer
uid with lower layer having infinite depth it is well known

hat the reflection coefficients for a submerged circular cylin-
er in lower layer are zero for any cases of incident wave
rain [ 3 ] but they also seen that it is not the case for a cylin-
er in the upper layer of a two layer fluid. Here when the
ylinder is in the lower layer it is seen that the reflection
oefficients are zero but it will seen that it is not the cases
or a cylinder in either the middle or in the upper layer of a
hree-layer fluid. 

.1.3. Numerical results 
Figs. 1 and 2 show the transmission coefficients for the

ase of an incident wave of wavenumber K incident on a
ircular cylinder in the lower layer. Similarly Figs. 3 , 4 and
igs. 5 , 6 show the transmission coefficients due to a wave of
ave numbers k 1 and k 2 , respectively incident on a cylinder

n the lower layer. In all those plots the immersion depth
f /a = −2, the depth of the middle fluid h/a is 2, depth of



D. Das / Journal of Ocean Engineering and Science 1 (2016) 135–148 141 

Fig. 2. Transmission coefficient due to a wave of wave number K incident 
on the cylinder in the lower layer. 

Fig. 3. Transmission coefficient due to a wave of wave number k 1 incident 
on the cylinder in the lower layer. 

Fig. 4. Transmission coefficient due to a wave of wave number k 1 incident 
on the cylinder in the lower layer. 
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Fig. 5. Transmission coefficient due to a wave of wave number k 2 incident 
on the cylinder in the lower layer. 

Fig. 6. Transmission coefficient due to a wave of wave number k 2 incident 
on the cylinder in the lower layer. 
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a  
he upper fluid H/a is 3 and the density ratios s 1 and s 2 are
.95 and 0.97, respectively. 

The transmission coefficient | T K K | corresponding to the
avenumber K shown in Fig. 1 first decreases as K a increases

or low to moderate values of K a but it increases as K a fur-
her increases. Fig. 2 describes the behavior of | T K k 1 

| , | T K k 2 
| , the

ransmission coefficients corresponding to the wavenumber k 1 
nd k 2 respectively which are complementary to the behavior
f | T K K | and are very small in comparison to | T K K | , but show
hat there is some conversion of energy from one wavenum-
er to the other. Similarly the transmission coefficients | T k 1 k 1 

| ,
 T k 2 k | corresponding to the wave of wavenumber k 1 due to a
2 
ave of wavenumber k 1 incident on a cylinder and k 2 due
o a wave of wavenumber k 2 incident on cylinder show in
igs. 4 and 6 respectively also first decrease as K a increases
or low to moderate values of K a but they increase as K a fur-
her increases. Fig. 3 describes the behavior of | T k 1 K | , | T k 1 k 2 

| ,
he transmission coefficients of wave of wavenumbers K and
 2 respectively due to a wave of wavenumber k 1 incident on
 cylinder which are complementary to the behavior of | T k 1 k 1 

|
 Fig. 4 ). Similarly Fig. 5 describes the behavior of | T k 2 K | , | T k 2 k 1 

| ,
he transmission coefficients of wave of wavenumbers K and
 1 respectively due to a wave of wavenumber k 2 incident on
 cylinder which are complementary to the behavior of | T k 2 k 2 

|
 Fig. 6 ). All the numerical values of the transmission coeffi-
ients have been checked for their correctness form the energy
dentities. 

If we let s 1 → 0 in the problem (corresponding to σ1 → 1 )
hen we see that the multipoles defined by ( 29 ) and ( 30 ) go
ver to the two-layer multipoles evaluated by [3] . Thus by
etting s 1 → 0 in the above analysis we recover the results
or the scattering by a horizontal circular cylinder in two-
ayer fluid with lower layer having infinite depth [3] . 

.2. Cylinder in the middle layer 

A horizontal circular cylinder of radius a has its axis
t y = f (> 0) and its generator runs parallel to the z-axis
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( f /a > 1) . Polar co-ordinates are again defined via ( 27 ) and
suitable multipoles, satisfying conditions ( 2 )–( 7 ), have the
forms 

φIs,a 
n = 

1 

(n − 1)! 

∫ ∞ 

0 
k n−1 

×
(

A 

(0, 1) 
M 

(k) e ky + B 

(0, 1) 
M 

(k) e −ky 
)

cos k x, sin k x dk , (42)

φI I s,a 
n = 

cos nθ, sin nθ

r n 
+ 

1 

(n − 1)! 

∫ ∞ 

0 
k n−1 

(
C 

(0, 1) 
M 

(k) e ky 

+ D 

(0, 1) 
M 

(k ) e −ky 
)

cos k x, sin k x dk , (43)

φI I I s,a 
n = 

1 

(n − 1)! 

∫ ∞ 

0 
k n−1 E 

(0, 1) 
M 

(k ) e ky cos k x, sin k x dk , (44)

where 

A 

(m) 
M 

(k) = 2 

(k + K ) K e −2k(h+ H ) 

(1 − s 1 ) H (k) 
[ (−1) n+ m (K σ2 − k) e k f 

−(k − K ) e −k f ] , m = 0, 1 , 

B 

( m) 
M 

(k) = 

(k − K ) e 2k(h+ H ) 

k + K 

A 

(m) 
M 

(k) , 

 

(m) 
M 

(k) = 

(k − K ) e −2kh − (k + K σ1 ) e −2k(h+ H ) 

H (k) 

× [(k + K ) { (k − K ) e −k f 

− (−1) n+ m (K σ2 − k) e k f } ] , m = 0, 1 , 

D 

(m) 
M 

(k) = (−1) n+ m (k + K ) e k f 

× (k − K ) e −2kh − (k + K σ1 ) e −2k(h+ H ) 

h(k) 

−(k − K ) e −k f (K σ1 − k) + (k + K ) e −2kh 

h(k) 
, m = 0, 1 , 

E 

(m) 
M 

(k) = e −k f + C 

(m) 
M 

(k) − D 

(m) 
M 

(k) , 

and the path of integration is indented to pass beneath the
poles of the above six integrands at k = K, k = k 1 , and k =
k 2 . 

The far-field form of these multipoles, in the lower fluid
layer, is given by 

φI I I s,a 
n ∼ ( π i, ±π) 

(−1) n 

(n − 1)! 
( K 

n−1 E 

(0, 1) K 
M 

e ±iKx+ Ky 

+ k n−1 
1 E 

(0, 1) k 1 
M 

e ±i k 1 x+ k 1 y + k n−1 
2 E 

(0, 1) k 2 
M 

e ±i k 2 x+ k 2 y ) , (45)

as x = ±∞ , where E 

(0, 1) K 
M 

, E 

(0, 1) k 1 
M 

, E 

(0, 1) k 2 
M 

are the residues
of E 

(m) 
M 

(k) at k = K, k = k 1 and k = k 2 respectively, given
by 

E 

(m) K 
M 

= 2 (−1) n+ m+1 K 

3 (1 + σ1 )(1 −σ2 ) e 
K f −2K (h+ K ) /H 

′ (K ) , 

m = 0, 1 , 

E 

(m) k j 
M 

= 

( k j − K ) e −2 k j h − ( k j + K σ1 ) e −2 k j (h+ H ) 

H 

′ ( k j ) 
× [( k j + K ) { ( k j − K ) e −k j f 

− (−1) n+ m (K σ2 − k j ) e 
k j f } ] 

− (−1) n+ m ( k j − K )( k j + K ) e k j f 

× ( k j − K ) e −2 k j h − ( k j + K σ1 ) e −2 k j (h+ H ) 

H 

′ ( k j ) 

+ ( k j − K ) 2 e −k j f 
(K σ1 − k j ) + ( k j + K ) e −2 k j h 

H 

′ ( k j ) 
, 

m = 0, 1 , j = 1 , 2. 

The polar expansions of the multipoles, similar to the case
hen cylinder is in the lower fluid, are 

I I s,a 
n = 

cos nθ, sin nθ

r n 
+ 

∞ ∑ 

m=0 

B 

s,a 
nm 

r m cos m θ, sin m θ, (46)

here 

 

s,a 
nm 

= 

1 

(n − 1)! m! 

∫ ∞ 

0 
k n+ m−1 ( ( −1) m,m+1 C 

(0, 1) 
M 

(k) e k f 

+ D 

(0, 1) 
M 

(k ) e −k f ) dk . (47)

Note that unlike the case of multipoles singular in the
ower layer, the coefficients in the polar expansions of φs 

n 
nd φa 

n are not the same. 

.2.1. Incident wave train of wavenumber K 

For this problem φII 
inc is given, in the middle fluid, by

 

iKx+ Ky . The polar expansion is given in ( 33 ) and the velocity
otential φII 

K is expanded similar as ( 34 ), where φs 
n and φa 

n are
he symmetric and antisymmetric multipoles developed for the

iddle fluid respectively. After applying the body boundary

ondition, ∂φII 
K 

∂r = 0 on r = a and also using the orthogonal
roperties of trigonometric functions, we obtain the two infi-
ite system of linear equations 

( a m 

, b m 

) −
∞ ∑ 

n=1 

a 

n+ m B 

a,s 
nm 

( a n , b n ) 

= (−i, 1) 
(−ka) m 

m! 
e K f , m = 1 , 2 . . . (48)

These equations were solved by truncations to 5 × 5 sys-
ems to produce the numerical results. The reflection and
ransmission coefficients can be extracted from the far-field
orm of the potential φI I I 

K , using ( 33 ) and ( 45 ) with far field
orm of φI I I 

K , and are given by 

 

K 
K , T 

K 
K = (0, 1) + π

∞ ∑ 

n=1 

1 

(n − 1)! 
a 

n K 

n−1 { i b n E 

(0) K 
M 

∓ a n E 

(1) K 
M 

} , 

(49)

 

k j 
K , T 

k j 
K = π

∞ ∑ 

n=1 

1 

(n − 1)! 
a 

n k n−1 
j { i b n E 

(0) k j 
M 

∓ a n E 

(1) k j 
M 

} , 

j = 1 , 2. (50)
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Fig. 7. Transmission coefficient due to a wave of wave number K incident 
on the cylinder in the middle layer. 
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Fig. 8. Transmission coefficient due to a wave of wave number K incident 
on the cylinder in the middle layer. 

Fig. 9. Reflection coefficient due to a wave of wave number K incident on 
the cylinder in the middle layer. 
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.2.2. Incident wave train of wavenumber k j , j = 1 , 2
For this problem φII 

inc is given, in the middle fluid, by
 

i k j x g 

j 
2 (y) . The polar expansion of φII 

inc is given by 

II 
inc = 

∞ ∑ 

m=0 

( M 1 ( k j ) cos mθ + i M 2 ( k j ) sin mθ ) 
( k j r) m 

m! 
, 

j = 1 , 2, (51) 

here 

 1 , 2 ( k j ) = (−1) m,m+1 k j − K σ2 

K (1 − s 1 )(1 − σ2 ) 
e k j f 

+ 

k j − K 

K (1 − s 1 )(1 − σ2 ) 
e −k j f . 

The velocity potential φII 
k j 

for this scattering problem can
gain be expanded in multipoles similar to ( 33 ) and the equa-
ions for a n and b n are 

( a m 

, b m 

) −
∞ ∑ 

n=1 

a 

n+ m B 

a,s 
nm 

( a n , b n ) = (−i, 1) 
( k j a) m 

m! 
M 2, 1 ( k j ) , 

 = 1 , 2, ... (52) 

The reflection and transmission coefficients can be ex-
racted from the far-field form of the potential φI I I 

k j 
using ( 33 )

nd ( 45 ) with far field form of φI I I 
K . The expressions for R 

K 
k j 

nd R 

k 1 , 2 
k j 

are similar to ( 49 ) and ( 50 ) with appropriate changes,
nd the transmission coefficients are given by 

 

K 
k j , T 

k s 
k j 

= π

∞ ∑ 

n=0 

1 

(n − 1)! 
a 

n 
(
K 

n−1 , k n−1 
j 

){ 

i b n E 

(0) K, k j 
M 

+ a n E 

(1) K, k j 
M 

} 

+ (0, δ j 
s ) , j = 1 , 2, s = 1 , 2 . (53) 

.2.3. Numerical results 
We choose h/a = 2. 5 , H/a = 3 , f /a = 1 . 25 , s 1 = 0. 4,

 2 = 0. 5 for which the transmission and reflection coefficients
ue to an incident wave of wave number K are depicted in
igs. 7–9 . Figs. 10–12 and Figs. 13–15 show the results for

he same parameters but an incident wave of wave number k 1 
nd k 2 , respectively. Fig. 7 shows that the transmission coeffi-
ients | T K K | first decreases as K a increases, attains a minimum
alue and then increases as K a further increases. Figs. 8 and
 show that the transmission coefficients | T K k 1 

| , | T K k 2 
| and the

eflection coefficients | R 

K 
K | , | R 

K 
k 1 
| , | R 

K 
k 2 
| respectively, first in-

reases as K a increases, each attains a maximum values and
he decreases as K a further increases. The transmission coef-
cients of waves of wavenumbers k 1 and k 2 and the reflection
oefficients of wave of wavenumbers K, k 1 , k 2 for an incident
ave of wavenumber K, shown in Figs. 8 and 9 respectively,

re smaller in comparison to those for wave of wavenumber
, but their non-zero values show that there is some conver-

ion of energy from one wave number to the other. 
Figs. 10 and 13 show that the transmission coefficients

 T k 1 k 1 
| , | T k 2 k 2 

| of wave of wavenumbers k 1 and k 2 for incident
ave of wavenumbers k 1 and k 2 , respectively, Figs. 11 and 12

how that the transmission coefficients | T k 1 K | , | T k 1 k 2 
| of wave of

avenumbers K and k 2 and the reflection coefficients | R 

k 1 
K | ,

 R 

k 1 
k 1 

| , | R 

k 1 
k 2 

| of wave of wavenumbers K, k 1 , k 2 respectively for
n incident wave of wavenumber k 1 . Figs. 14 and 15 show that
he transmission coefficients | T k 2 K | , | T k 2 k 1 

| of wave of wavenum-

ers K and k 1 and the reflection coefficients | R 

k 2 
K | , | R 

k 2 
k 1 

| , | R 

k 2 
k 2 

|
f wave of wavenumbers K, k 1 , k 2 respectively for an incident
ave of wavenumber k 2 . They are somewhat similar to those
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Fig. 10. Transmission coefficient due to a wave of wave number k 1 incident 
on the cylinder in the middle layer. 

Fig. 11. Transmission coefficient due to a wave of wave number k 1 incident 
on the cylinder in the middle layer. 

Fig. 12. Reflection coefficient due to a wave of wave number k 1 incident on 
the cylinder in the middle layer. 

 

 

 

 

Fig. 13. Transmission coefficient due to a wave of wave number k 2 incident 
on the cylinder in the middle layer. 

Fig. 14. Transmission coefficient due to a wave of wave number k 2 incident 
on the cylinder in the middle layer. 

Fig. 15. Reflection coefficient due to a wave of wave number k 2 incident on 
the cylinder in the middle layer. 

1  

m

φ

 

φ

 

φ  
for the scattering of an incident wave of wavenumber K by
a circular cylinder in the middle layer and display the same
characteristics. 

2.3. Cylinder in the upper layer 

A horizontal circular cylinder of radius a has its axis at y =
f + h(> 0) and its generator runs parallel to the z-axis ( f /a >
) . Polar co-ordinates are again defined via ( 27 ) and suitable
ultipoles, satisfying conditions ( 2 )–( 7 ), have the forms 

Is,a 
n = 

cos nθ, sin nθ

r n 
+ 

1 

(n − 1)! 

∫ ∞ 

0 
k n−1 

×
(

A 

(0, 1) 
U 

(k) e ky + B 

(0, 1) 
U 

(k) e −ky 
)

cos k x, sin k x dk , (54)

I I s,a 
n = 

1 

(n − 1)! 

∫ ∞ 

0 
k n−1 (C 

(0, 1) 
U 

(k) e ky 

+ D 

(0, 1) 
U 

(k) e −ky ) cos kx, sin kx dk, (55)

I I I s,a 
n = 

1 

(n − 1)! 

∫ ∞ 

0 
k n−1 E 

(0, 1) 
U 

(k ) e ky cos k x, sin k x dk , (56)
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(m) 
U 

(k) = (k − K ) e −k f −2k H [ −( k + K σ1 ) e 
−2kh + (k + K σ2 )] 

+ (−1) n+ m e −2k (h+ H )+ k f [(k − K σ1 )(k − K σ2 ) 

−(k + K )(k − K ) e −2kh ] 
(k + K ) 

H (k) 
, m = 0, 1 , 

 

( m) 
U 

(k) = [ (−1) n+ m (k + K ) e k f −2k H + (k − K ) e −k f +2k H ] 

× (k − K σ2 ) − (k + K σ1 ) e −2kh 

h(k) 
, m = 0, 1 , 

 

(m) 
U 

(k) = −2K s 1 (k − K σ2 ) 

× (−1) n+ m (k + K ) e −2k (h+ H )+ k f + (k − K ) e −k f 

(1 − s 1 ) H (k) 
, 

 = 0, 1 , 

 

(m) 
U 

(k) = 

(k − K ) C 

(m) 
U 

(k) 

(k − K σ2 ) 
, E 

(m) 
U 

(k) = C 

(m) 
U 

(k) − D 

(m) 
U 

(k) , 

 = 0, 1 , 

nd the path of integration is indented to pass beneath the
oles of the above six integrands at K, k 1 , k 2 . 

The far-field form of these multipoles, in the lower fluid
ayer, is given by 

I I I s,a 
n ∼ ( π i, ±π) 

1 

(n − 1)! 
( K 

n−1 E 

(0, 1) K 
U 

e ±iKx+ Ky 

+ k n−1 
1 E 

(0, 1) k 1 
U 

e ±i k 1 x+ k 1 y + k n−1 
2 E 

(0, 1) k 2 
U 

e ±i k 2 x+ k 2 y ) , (57) 

s x = ±∞ , where E 

(0, 1) K 
U 

, E 

(0, 1) k 1 
U 

, E 

(0, 1) k 2 
U 

are the residues of
 

(m) 
U 

(k) at k = K, k = k 1 and k = k 2 respectively, given by 

 

(m) K 
U 

= −4 (−1) n+ m K 

3 s 1 (1 − σ2 ) e K f −2K (h+ K ) 

(1 − s 1 ) h(K ) 
, m = 0, 1 , 

 

(m) k j 
U 

= 

(−1) n+ m ( k j + K ) e −2 k j (h+ H )+ k j f + ( k j − K ) e −k j f 

(1 − s 1 ) H 

′ ( k j ) 
× 2K s 1 {−( k j − K σ2 ) + ( k j − K ) } , m = 0, 1 , 

j = 1 , 2. 

The polar expansions of the multipoles, similar to the case
hen cylinder is in the middle fluid, are 

Is,a 
n = 

cos nθ, sin nθ

r n 
+ 

∞ ∑ 

m=0 

C 

s,a 
nm 

r m cos m θ, sin m θ, (58)

here 

 

s,a 
nm 

= 
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(n − 1)! m! 

∫ ∞ 

0 
k n+ m−1 ( ( −1) m,m+1 A 

(0, 1) 
U 

(k) e k f 

+ B 

(0, 1) 
U 

(k ) e −k f ) dk . (59) 

Note that unlike the case of multipoles singular in the
ower layer, the coefficients in the polar expansions of φs 

n 
nd φa 

n are not the same. 
.3.1. Incident wave train of wavenumber K 

For this problem φI 
inc is given, in the upper fluid, by

 

iKx+ Ky . The polar expansion is given in ( 33 ) and the velocity
otential φI 

K is expanded similar to as ( 34 ), where φs 
n and

a 
n are the symmetric and antisymmetric multipoles devel-
ped for the upper fluid respectively. After applying the body

oundary condition, ∂φI 
K 

∂r = 0 on r = a and also using the or-
hogonal properties of trigonometric functions, we obtain the
wo infinite systems of linear equations 

( a m 

, b m 

) −
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n=1 

a 

n+ m C 

a,s 
nm 

( a n , b n ) = (−i, 1) 
(−K a) m 

m! 
e K f , 

 = 1 , 2, ... (60) 

These equations were solved by truncations to 5 × 5 sys-
ems to produce the numerical results. The reflection and
ransmission coefficients can be extracted from the far-field
orm of the potential φI I I 

K , using ( 33 ) and ( 57 ) with far field
orm of φI I I 

K , and are given by 

 

K 
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K 
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n k n−1 
j { i b n E 

(0) k j 
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∓ a n E 

(1) k j 
U 

} , 

j = 1 , 2. (62) 

.3.2. Incident wave train of wavenumber k j , j = 1 , 2
For this problem φI 

inc is given, in the upper fluid, by
 

i k j x g 

j 
1 (y) . The polar expansion of φI 

inc is given by 

I 
inc = 

∞ ∑ 

m=0 

( N 1 ( k j ) cos mθ + i N 2 ( k j ) sin mθ ) 
( k j r) m 

m! 
, j = 1 , 2, 

(63) 

here 

 1 , 2 ( k j ) = 2 (−1) m,m+1 ( k j + K ) e −2 k j (h+ K ) 

N ( k j ) 
e k j f 

+ 

k j − K 

N ( k j ) 
e −k j f , j = 1 , 2, 

 ( k j ) = (1 − s 1 )(1 − σ2 )[( k j + K ) e −2 k j H − ( k j − K σ1 )] , 

j = 1 , 2. 

The velocity potential φI 
k j 

for this scattering problem can
gain be expanded in multipoles similar to ( 33 ) and the equa-
ions for a n and b n are 

( a m 

, b m 

) −
∞ ∑ 

n=1 

a 

n+ m C 

a,s 
nm 

( a n , b n ) = (i, 1) 
( k j a) m 

m! 
N 2, 1 ( k j ) , 

 = 1 , 2, ... (64) 

The reflection and transmission coefficients can be ex-
racted from the far-field form of the potential φI I I 

k j 
using ( 33 )
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Fig. 16. Transmission coefficient due to a wave of wave number K incident 
on the cylinder in the upper layer. 

Fig. 17. Transmission coefficient due to a wave of wave number K incident 
on the cylinder in the upper layer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 18. Reflection coefficient due to a wave of wave number K incident on 
the cylinder in the upper layer. 

Fig. 19. Transmission coefficient due to a wave of wave number k 1 incident 
on the cylinder in the upper layer. 

Fig. 20. Transmission coefficient due to a wave of wave number k 1 incident 
on the cylinder in the upper layer. 
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a  
and ( 57 ) with far field form of φI I I 
K . The expressions for R 

K 
k j 

and R 

k 1 , 2 
k j 

are similar to ( 61 ) and ( 62 ) with appropriate changes,
and the transmission coefficients are given by 

T K k j , T 
k s 

k j 
= π

∞ ∑ 

n=0 

1 

(n − 1)! 
a 

n ( K 

n−1 , k n−1 
j ) 

×
{ 

i b n E 

(0) K, k j 
U 

+ a n E 

(1) K, k j 
U 

} 

+ (0, δ j 
s ) , j = 1 , 2, s = 1 , 2 . (65)

2.3.3. Numerical results 
We choose h/a = 2. 5 , H/a = 3 , f /a = 3 . 5 , s 1 = 0. 4,

s 2 = 0. 5 for which the transmission and reflection coefficients
due to an incident wave of wave number K are depicted in
Figs. 16–18 . Figs. 19–21 and Figs. 22–24 show the results for
the same parameters but an incident wave of wave number
k 1 and k 2 respectively. Fig. 16 shows that the transmission
coefficients | T K K | first decreases as K a increases, attains a
minimum value and then increases as K a further increases.
Figs. 17 and 18 show that the transmission coefficients
| T K k 1 

| , | T K k 2 
| and the reflection coefficients | R 

K 
K | , | R 

K 
k 1 
| , | R 

K 
k 2 
|

respectively, first increases as K a increases, each attains a
maximum values and the decreases as K a further increases.
The transmission coefficients of waves of wavenumbers k 1 
and k and the reflection coefficients of wave of wavenum-
2 
ers K, k 1 , k 2 for an incident wave of wavenumber K, shown
n Figs. 17 and 18 respectively, are smaller in comparison to
hose for wave of wavenumber K, but their non-zero values
how that there is some conversion of energy from one wave
umber to the other. 

Figs. 19 and 20 show that the transmission coefficients
 T k 1 k 1 

| , | T k 2 k 2 
| of wave of wavenumbers k 1 and k 2 for incident

ave of wavenumbers k 1 and k 2 , respectively, Figs. 20 and 21
how that the transmission coefficients | T k 1 K | , | T k 1 k 2 

| of wave of

avenumbers K and k 2 and the reflection coefficients | R 

k 1 
K | ,

 R 

k 1 
k 1 

| , | R 

k 1 
k 2 

| of wave of wavenumbers K, k 1 , k 2 respectively for
n incident wave of wavenumber k 1 . Figs. 23 and 24 show that
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Fig. 21. Reflection coefficient due to a wave of wave number k 1 incident on 
the cylinder in the upper layer. 

Fig. 22. Transmission coefficient due to a wave of wave number k 2 incident 
on the cylinder in the upper layer. 
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Fig. 23. Transmission coefficient due to a wave of wave number k 2 incident 
on the cylinder in the upper layer. 

Fig. 24. Reflection coefficient due to a wave of wave number k 2 incident on 
the cylinder in the upper layer. 
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he transmission coefficients | T k 2 K | , | T k 2 k 1 
| of wave of wavenum-

ers K and k 1 and the reflection coefficients | R 

k 2 
K | , | R 

k 2 
k 1 

| , | R 

k 2 
k 2 

|
f wave of wavenumbers K, k 1 , k 2 respectively for an incident
ave of wavenumber k 2 . All the figures are somewhat similar

o those for the scattering of an incident wave of wavenum-
er K (for Figs. 16–18 ), k 1 (for Figs. 19–21 ) and k 2 (for
igs. 22–24 ) by a circular cylinder in the middle layer and
isplay the same characteristics but they are slight different
rom the figures given in the case of middle or lower layer. 

Reflection and transmission coefficients are oscillatory in
ature and all reflection coefficients for all the incident wave
umbers, transmission coefficients in Figs. 17, 20 , and 23
end ultimately to zero for large K a and also transmission
oefficients in Figs. 16, 19 , and 22 tend to unity for large K a.

ll the numerical values of the reflection and transmission
oefficients have been checked for their correctness from the
nergy identities. 

. Conclusions 

In this paper we have studied the problem of water wave
cattering by a horizontal circular cylinder submerged in ei-
her layer of a three-layer fluid. The middle layer is of fi-
ite depth and is bounded above by an upper layer of finite
epth with free surface and the lower layer extends infinitely
ownwards. In such a situation propagating waves can exist
t three different wave numbers for any frequency, first one
ropagates on the free surface, second one on the interface
etween upper and middle layer and third one on the interface
etween middle and lower layer. The systematic derivation,
sing Green’s theorem, of all the energy identities has been
btained to the three-fluid case. When the cylinder is posi-
ioned in the lower layer of a two-layer fluid, it is well known
hat zero reflections occur for any radius of the cross-section
f the cylinder and wave number and we have shown that for
 cylinder in the lower layer (infinite) of a three layer fluid
his is again the case, zero reflections occur for either of the
ossible wavenumbers. When the cylinder is in the upper or
iddle layer, zero reflection is not observed. The transmission

nd reflection coefficients are depicted graphically against the
ave number in a number of figures. Energy identities are
sed as partial numerical checks for all the data points. A
rief summary of your research results should be included in
his section toward the end of the paper. 
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