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Abstract 

This paper intends to study the stochastic response and reliability of the roll motion under the action of wind and wave excitation. The roll 
motion in random beam seas is described by a four-dimensional (4D) Markov dynamic system whose probabilistic properties are governed 
by the Fokker –Planck (FP) equation. The 4D path integration (PI) method, an efficient numerical technique based on the Markov property of 
the 4D system, is applied in order to solve the high dimensional FP equation and then the stochastic statistics of the roll motion are derived. 
Based on the obtained response statistics, the reliability evaluation of the ship stability is performed and the effect of wind action is studied. 
The accuracy of the 4D PI method and the reliability evaluation is assessed by the versatile Monte Carlo simulation (MCS) method. 
© 2016 Shanghai Jiaotong University. Published by Elsevier B.V. 
This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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. Introduction 

The roll motion in random seas is the most critical mode
eading to ship stability failure. Generally, there are two types
f intact stability failures, i.e., total intact stability failure and
artial stability failure [1] . Ship capsizing is classified as the
ormer category, while the latter is associated with the oc-
urrence of large or extreme roll angles, which would impair
he normal operations or even lead to damage of the ship.
herefore, prediction of the extreme roll responses and the
ssociated risk assessment of ship stability are crucial for re-
iability based design and operation in practice. 

However, the current criteria of the International Maritime
rganization (IMO) for evaluation of the intact stability of a
essel under the action of random wave and wind excitation
re simply based on the weather criterion. This criterion is
ydrostatic and the stochastic properties of the external exci-
ation have not been taken into consideration. In this study,
he dynamic stability is evaluated by means of a probabilistic
pproach and the associated stochastic roll response as well
∗ Corresponding author. 
E-mail address: chai.wei@ntnu.no . 
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s the reliability evaluation may provide insight with respect
o the effect of random external excitation on the nonlinear
oll dynamics. 

The mean upcrossing rate is a key parameter for a detailed
ssessment of the response statistics of marine structures sub-
ected to random excitation loads [2] . Moreover, the reliability
nalysis methodology based on the mean upcrossing rate is
obust and widely used in the reliability engineering. How-
ver, determining the stochastic response (such as the mean
pcrossing rate) of the nonlinear roll motion excited by ran-
om external excitation is a challenge and limited progress
as been made in the past decades. Monte Carlo simulation
MCS) is the simplest methodology to determine the mean
pcrossing rate of the roll motion, but the associated compu-
ation burden may be prohibitive for estimation of the high-
evel responses with low probability levels. 

In addition to the versatile and straightforward MCS
ethod, the methodology based on the Markov diffusion the-

ry is attractive since the probabilistic properties are governed
y the Fokker –Planck (FP) equation [3] . It is well known
hat the Markov model is only valid for the dynamic sys-
ems driven by Gaussian white noise or filtered white noise.
herefore, the shaping filter technique is introduced in order
 is an open access article under the CC BY-NC-ND license 
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to approximate the random external excitation term as a fil-
tered white noise process. For the extended Markov system,
established by combining the roll motion equation and the
filter model, the efficient path integration (PI) method is ap-
plied in order to obtain the response statistics by solving the
corresponding FP equation. The main advantage of the PI
method and the Markov dynamic system is that a host of ac-
curate and useful response statistics can be obtained within
one calculation [4,5] . Moreover, the great performance and
high efficiency of the PI technique in calculating the mean
upcrossing rate of high-level roll responses will be demon-
strated. 

In this paper, we aim to quantify the wind action on the
stochastic roll response as well as on the intact ship stabil-
ity. The MCS method serves as an efficient tool to evaluate
the accuracy of the proposed numerical methods. The results
and conclusions obtained in this work hopefully can provide
useful references for ship stability research and practical op-
erations. 

2. Mathematical model of roll motion 

For the case of dead ship condition, i.e. a ship with zero
speed (or low speed) under unidirectional beam seas and beam
wind action, the roll motion can be represented by the fol-
lowing single-degree-of-freedom (SDOF) equation [6] : 

( I 44 + A 44 ) ̈θ (t ) + B 44 ̇  θ (t ) + B 44q ̇  θ (t ) | ̇  θ (t ) | 
+ �GZ(θ (t )) = M wave (t ) + M wind (t ) (1)

where θ ( t ) and 

˙ θ (t ) are the roll angle and the roll veloc-
ity, respectively. I 44 represents the moment of inertia in roll
and A 44 is the added mass moment term. B 44 and B 44 q are
linear and quadratic damping coefficients, respectively. The
stiffness term �GZ ( θ ( t )) relates to the restoring moment of
the roll motion, M wave ( t ) represents the random wave exci-
tation moment and M wind ( t ) denotes the excitation moment
caused by wind. 

The restoring moment is expressed in terms of the dis-
placement � and the restoring arm GZ , which can be ob-
tained from standard hydrostatic software. The restoring mo-
ment term is usually given by a nonlinear odd function of the
roll angle, i.e. 

GZ(θ ) = C 1 θ − C 3 θ
3 (2)

in which, C 1 and C 3 are the linear and the nonlinear roll
restoring coefficients of the restoring arm, respectively. Note
that the roll motion has a softening characteristic since the
nonlinear stiffness term is negative. For the softening cases,
ship capsizing would happen when the roll angle exceeds the
angle of vanishing stability beyond which the restoring mo-
ment becomes negative. 

The random wave excitation moment M wave ( t ) can be de-
scribed by the wave excitation moment spectrum, S Mwave ( ω).
The latter is related to the wave energy spectrum, S ξξ ( ω), by
the following relationship: 

S M wave (ω) = | F roll (ω ) | 2 S ξξ (ω ) (3)
here | F roll ( ω)| represents the roll moment amplitude per unit
ave height at frequency ω. Moreover, the wave elevation

nd the wave excitation moment are assumed to be stationary
aussian processes. 
For the wind induced excitation moment, M wind ( t ), it can

e calculated by the following formula: 

 wind (t ) = 

1 

2 

ρair C w 

A w 

l W 

( U m 

+ U (t )) 2 (4)

here ρair is the mass density of air and C w 

denotes a wind
ressure coefficient. U m 

is the mean wind speed and U ( t ) is
he fluctuating wind speed. A w 

represents the lateral windage
nd l w 

is the wind moment arm. 
Generally, ( U ( t )/ U m 

) << 1 and the wind excitation mo-
ent ( 4 ) can be expressed as [7] : 

 wind (t ) = M̄ wind + M f (t ) 

= 

1 

2 

ρair C w 

A w 

l W 

U 

2 
m 

+ ρair C w 

A w 

l W 

U m 

U (t ) (5)

here M̄ wind and M f ( t ) denote the mean wind moment and
uctuating wind moment, respectively. The mean wind action
esults in a heeling angle θ s and their relationship can be
xpressed as: 

¯
 wind = �GZ( θs ) (6)

As for the fluctuating wind moment, its spectral density
s related to the wind spectrum S U 

( ω), by the following rela-
ionship [2] : 

 M f (ω) = ( ρair C w 

A w 

l W 

U m 

) 2 · χ(ω) · S U 

(ω) (7)

here χ ( ω) is the aerodynamic admittance function, which
an be determined as: 

(ω) = 

1 

1 + ( 
ω 

√ 

A w 
πU m 

) 
4/ 3 (8)

The wind spectrum, which governs the fluctuating wind
peed, is given by the Davenport spectrum: 

 U 

(ω) = 4K 

U 

2 
m 

ω 

X 

2 
D 

(1 + X 

2 
D 

) 
4/ 3 (9)

here K = 0.003 and the dimensionless variable X D 

is given
y the following equation [8] : 

 D 

= 600 

ω 

πU m 

(10)

Dividing Eq. (1) by ( I 44 + A 44 ), the final format of the
ifferential equation is given as: 

θ̈ (t ) + b 44 ̇  θ (t ) + b 44q ̇  θ (t ) | ̇  θ (t ) | + c 1 θ (t ) − c 3 θ
3 (t ) 

= ( m wave (t ) + m f (t )) + m̄ wind = m(t ) + m̄ wind (11)

here b 44 , b 44 q , c 1 , c 3 are relative ship parameters. m wave ( t ),
 f ( t ) and m̄ wind are relative moments. The total relative ran-
om external excitation is denoted as m ( t ), which is assumed
o be the sum of the relative wave excitation m wave ( t ) and the
elative fluctuating wind moment m f ( t ). Correspondingly, the
pectrum of m ( t ) can be given as the sum of the spectrum of
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he relative wave excitation moment and the spectrum of the
elative fluctuating wind moment: 

 m 

(ω) = ( S M wave (ω) + S M f (ω)) / ( I 44 + A 44 ) 
2 

= S m wave (ω) + S m f (ω) (12) 

Finally, the SDOF model, i.e. Eq. (11) , can be transformed
nto the state-space equation written as: 

d x 1 = x 2 dt 

d x 2 = (−b 44 x 2 − b 44q x 2 | x 2 | − c 1 x 1 + c 3 x 3 1 + x 3 + m̄ wind ) dt 

(13) 

here x 1 = θ ( t ), x 2 = 

˙ θ (t ) , x 3 = m ( t ). 

. Modeling the random external excitation 

The linear filtering technique is widely used in the engi-
eering community for its practicality and simplicity. Dostal
nd Kreuzer [9] proposed a second-order linear filter and a
ourth-order linear filter to fit the desired narrow-banded spec-
rum. In this work, the spectrum of the relative random exter-
al excitation, S m 

( ω), can be approximated by the following
econd-order linear filter: 

d x 3 = ( x 4 − βx 3 ) dt + γ dW 

d x 4 = −αx 3 dt 
(14) 

here x 3 and x 4 are the state variables in the fil-
er equation with x 3 representing the output term m ( t ).
W ( t ) = W ( t + dt ) −W ( t ) represents an infinitesimal incre-
ent of a standard Wiener process with E { dW ( t )} = 0 and
 { dW ( t ) dW (s)} = 0 for t � = s and E { dW ( t ) 2 } = dt . The spec-

rum generated by the differential Eq. (14) is given by: 

 2nd (ω ) = 

1 

2π

γ 2 ω 

2 

(α − ω 

2 ) 
2 + (βω ) 2 

(15) 

n which α, β, γ are the parameters of the linear filter and
hey are determined by means of a least-square algorithm
hich is utilized in order to fit of the target spectrum, S mm 

( ω).
he bandwidth and the peak frequency of the filtered spec-

rum can be adjusted by changing the values of these param-
ters. 

By combining Eq. (13) with Eq. (15) , the extended dy-
amic system is formed. Therefore, the roll motion in random
eam seas with steady mean wind action can be described by
he following 4D state space equation: 
 

 

 

 

 

 

 

 

 

d x 1 = x 2 dt 

d x 2 = (−b 44 x 2 − b 44q x 2 | x 2 | − c 1 x 1 + c 3 x 3 1 + x 3 + m̄ wind ) dt 

d x 3 = ( x 4 − βx 3 ) dt + γ dW 

d x 4 = −αx 3 dt 

(16) 

. Path integration method 

Eq. (16) represents a Markov dynamic system and it can
e expressed as an It ̂  o stochastic differential equation (SDE):

 x = a(x, t ) dt + b (t ) dW(t ) (17)
here x ( t ) = ( x 1 ( t ),…, x 4 ( t )) T is a 4D state space vector pro-
ess, the vector a ( x , t ) is the drift term and b ( t ) d W ( t ) repre-
ents the diffusive term. The vector d W ( t ) = W ( t + dt ) −W ( t )
enotes independent increments of a standard Wiener process.

The solution x ( t ) to Eq. (17) is a Markov process and
ts transition probability density (TPD), also known as the
onditional PDF, p ( x , t | x ′ , t ′ ) satisfies the FP equation which is
xpressed on the following form: 

∂ 

∂t 
p(x , t | x 

′ , t ′ ) = −
4 ∑ 

i=1 

∂ 

∂ x i 
a i (x, t ) p(x, t | x 

′ , t ′ ) 

+ 

1 

2 

4 ∑ 

i=1 

4 ∑ 

j=1 

∂ 2 

∂ x i ∂ x j 
(b(t ) ·b 

T (t )) i j p(x , t | x 

′ , t ′ ) 

(18) 

The PI method captures the probabilistic evolution of the
rocess x ( t ) by taking advantage of the Markov property and
he PDF of the process x ( t ) can be determined by the follow-
ng basic equation: 

p(x, t ) = 

∫ 

R 4 
p(x , t | x 

′ , t ′ ) p ( x 

′ , t ′ ) d x 

′ (19)

here d x 

′ = 

∏ 4 
i=1 d x ′ i . 

Specifically, the value of the PDF at time t , p ( x , t ), can be
alculated by Eq. (19) based on the values of the previous
DF at time t ′ as well as the value of the conditional PDF,
 ( x , t | x 

′ , t ′ ). For a numerical solution of the SDE ( 17 ), a time
iscretized approximation should be introduced. Naess and
oe [10] proposed an efficient fourth-order Runge –Kutta –
aruyama (RKM) discretization approximation: 

(t ) = x(t ′ ) + r(x(t ′ ) , t ′ )�t + b(t ′ )�W(t ′ ) (20)

here the vector r ( x ( t ′ ), t ′ ) is the explicit fourth-order Runge –
utta (RK4) increment. The time sequence { x(i · �t ) } ∞ 

i=0 is
 Markov chain and it can approximate the time-continuous
arkov process solution of the SDE ( 17 ) when the time incre-
ent �t = t − t ′ is sufficiently small. Since W ( t ) is a Wiener

rocess, the independent increment �W ( t ′ ) = W ( t ) −W ( t ′ ) is
 Gaussian variable for every t ́. 

If we consider only the deterministic part of Eq. (10) , the
pproximation Eq. (20) reduces to the RK4 approximation
 ( t ) = x ( t ′ ) + r ( x ( t ′ ), t ′ ) �t . Experiments have shown that, for
he Markov systems, the accuracy related to approximation
f the deterministic terms is most important [11] . In this re-
ard, the accuracy of the fourth-order RKM approximation is
atisfactory since the fourth-order Runge –Kutta approxima-
ion represents the time evaluation of the deterministic part
f Eq. (17) with an accuracy to the order of O ( �t 5 ). 

Moreover, the conditional PDF of the process x ( t ),
 ( x , t | x 

′ , t ′ ), follows a (degenerate) Gaussian distribution and
t can be written as: 

p(x , t | x 

′ , t ′ ) = δ( x 1 − x ′ 1 − r 1 ( x 

′ , �t )) 

· δ( x 2 − x ′ 2 − r 2 ( x 

′ , �t )) 

· ˜ p ( x 3 , t | x ′ 3 , t ′ ) 
· δ( x 4 − x ′ 4 − r 4 ( x 

′ , �t )) (21) 
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Fig. 1. GZ curve for the selected vessel. 

Fig. 2. Relative wave excitation moment spectrum, relative fluctuating wind 
spectrum, relative spectrum of total relative random external excitation, fil- 
tered spectrum and the corrected filtered spectrum (part). 

 

where ˜ p ( x 3 , t | x ′ 3 , t ′ ) is given by the relation: 

˜ p ( x 3 , t | x ′ 3 , t ′ ) = 

1 √ 

2πγ 2 �t 
· exp 

{ 

− ( x 3 − x ′ 3 − r 3 ( x 

′ , �t )) 2 

2 γ 2 �t 

} 

(22)

in which r i ( x 

′ , �t ), i = 1, 2, 3, 4, are the Runge –Kutta incre-
ments for the state space variables. 

Because the expression for the conditional PDF is known,
the time evolution of the PDF of x ( t ) can be determined by the
iterative algorithm ( 16 ) if an initial PDF p ( x 

(0) , t 0 ) is given 

p(x, t ) = 

∫ 

R 4 
· · ·

∫ 

R 4 

n ∏ 

i=1 

p( x 

(i) , t i | x 

(i−1) , t i−1 ) 

· p( x 

(0) , t 0 ) d x 

(0) . . . d x 

(n−1) (23)

where x = x 

( n ) , t = t n = t 0 + n ��t . 
As for the numerical implementation of the iterative algo-

rithm ( 23 ), it represents the PDF at the previous time t ′ as an
interpolating spline surface via Parabolic B-spline and then
it evaluates the PDF at time t by several specific steps. The
initial PDF p ( x 

(0) , t 0 ) is chosen as a 4D Gaussian PDF with
zero mean and variances evaluated by a simple Monte Carlo
simulation [11] . The numerical iterative algorithm and the as-
sociated specific computational steps have been systematically
described by Chai et al. [4] . 

5. Numerical results 

5.1. Random external excitation 

In this section, the importance of the random external ex-
citation, i.e., m wave ( t ) and m f ( t ) in Eq. (11) is studied. A real
ship model in Ref. [12] is selected for the simulation. The
main parameters of the vessel are shown in Table 1 and GZ
curve for the selected ship model is plotted in Fig. 1 . 

The modified Pierson –Moskowitz (P –M) spectrum, widely
used for fully developed sea states, is adopted in this analysis.

S ξξ (ω ) = 

5 . 058 g 

2 H 

2 
s 

T 4 p ω 

5 
exp 

( 

−1 . 25 

ω 

4 
p 

ω 

4 

) 

(24)

in which H s denotes the significant wave height, ω p is the
peak frequency at which the wave spectrum S ξξ ( ω) has its
maximum, and T p is the corresponding peak period. 
Table 1 
List of parameters for the vessel. 

Parameters Dimensional value 

I 44 + A 44 5.540 × 10 7 kg m 

2 

� 2.017 ×10 7 N 

A w 620 m 

2 

l w 6.85 m 

b 44 0.095 s −1 

b 44 q 0.0519 
c 1 1.153 s −2 

c 3 0.915 s −2 

ω 0 1.074 rad/s 

f  

S  

f  

t  

U  

I
 

S  

a  

w  

r  

t  

t  
The sea state with H s = 4.0 m, T p = 11.0 s is selected
or the subsequent study and the wave excitation spectrum
 Mwave ( ω) is then determined by Eq. (3) with the relevant in-
ormation of | F roll ( ω)| being given in Ref. [12] . For the spec-
rum of the fluctuating wind moment, the mean wind speed
 m 

is selected as 26 m/s according to weather criterion of the
MO and the wind pressure coefficient C w 

= 0.95 [13] . 
The spectrum of the relative wave excitation moment,

 m wave (ω) for the selected sea state, the spectrum of the rel-
tive fluctuating wind moment S m f (ω) for the selected mean
ind speed and the corresponding spectrum of total relative

andom external excitation, S m 

( ω) are shown in Fig. 2 . For
he roll motion, the transfer function between the roll exci-
ation moment and the roll response in the SDOF model ( 1 )



W. Chai / Journal of Ocean Engineering and Science 1 (2016) 149–156 153 

i  

t  

f  

b  

r  

c  

t  

r
 

c  

fi  

s  

t  

p  

b  

l  

t  

i  

d  

s  

v
 

r  

d  

t

S

 

t  

t  

t  

s  

F

o  

l  

s  

s

5

 

t  

l  

p  

r  

T  

a  

a  

t  

o  

b

P

w  

t  

θ  

p  

t  

f

v

i  

t
 

i  

p  

e  

e  

n  

t  

p  

c  

p
 

a  

m  

t  

b  

v

W  

f  

l  

fi  

s  

v  

c
5  

i  

l  

p
 

C

C

w

s

 

b  

t  

c  

s  

d  

h  
s narrow-banded due to the light roll damping. Therefore,
he value of S m 

( ω) in the critical region near the natural roll
requency, ω 0 , dominates the subsequent roll response. It can
e seen in Fig. 2 that S m f (ω) is peaked in the low-frequency
egion and its value in the critical region is negligible when
ompared with the values of S m wave (ω) and S m 

( ω). Therefore,
he influence of fluctuating wind moment on the stochastic
oll response can be neglected in the simulation. 

As mentioned in Section 3 , the relative random external ex-
itation, S m 

( ω), can be approximated by a second-order linear
lter, whose parameters are determined by means of a least-
quare algorithm. The fitting result is shown in Fig. 2 that
he filtered spectrum is reasonable in terms of bandwidth,
eak frequency and peak value. The obvious discrepancies
etween the filtered spectrum and the desired spectrum in the
ow-frequency and high-frequency regions will not influence
he subsequent roll responses to a significant extent. However,
n the critical region near the natural roll frequency, the slight
iscrepancy between the two spectra should not be neglected
ince the distribution of high-level response is sensitive to the
ariation of the external excitation in this frequency region. 

Therefore, a constant, c , should be introduced as a cor-
ection factor for the filtered spectrum in order to reduce the
iscrepancy in the critical frequency region. The filtered spec-
rum ( 15 ) can be changed into: 

 2nd (ω) = 

1 

2π

(c · γ ) 2 ω 

2 

(α − ω 

2 ) 
2 + (βω) 2 

(25) 

In this work, for the selected sea state and vessel model,
he correction factor c is taken to be 1.07 by considering
he mean difference between the two spectral densities in
he critical frequency region. Moreover, the corrected filtered
pectrum in the critical frequency region is also presented in
ig. 2 . 

Even though the influence of fluctuating wind moment m f 

n the stochastic roll response can be neglected for the se-
ected vessel, the effect of the mean wind action on the re-
ponse statistics and ship stability is important and it will be
tudied in the following section. 

.2. Reliability evaluation 

The reliability evaluation is usually phrased in terms of
he probability of a stochastic process exceeding a threshold
evel ζ at least once within time duration T [14] . In this pa-
er, the second category of the intact stability failure, i.e. the
eliability associated with high level response, is considered.
he Poisson estimate is available if the crossing events are
ssumed to be rare and statistically independent. Under such
n assumption, the crossing events are Poisson distributed and
he probability that the roll angle process exceeds the thresh-
ld level ζ at least once within time duration T , P exc ( ζ ), can
e approximated as: 

 exc (ζ ) = 1 − exp 

(
−

∫ T 

0 
v + (ζ ; t ) dt 

)
(26) 
here v + ( ζ ; t ) denotes the expected number of upcrossings for
he ζ -level per unit time at time t by the roll angle process
( t ). By taking advantage of the joint PDF of the roll angle
rocess and the roll velocity process obtained by the 4D PI
echnique, the mean upcrossing rate can be given by the Rice
ormula: 

 

+ (ζ ; t ) = 

∫ ∞ 

0 

˙ θ f θ ˙ θ (ζ , ˙ θ; t ) d ̇

 θ (27) 

n which f θ ˙ θ (θ, ˙ θ; t ) is the joint PDF of the roll angle and
he roll velocity at the time instant t . 

As mentioned in Section 2 , due to the softening character-
stic of the stiffness term, ship capsizing will happen when the
redetermined simulation time (or exposure time) T is long
nough or the intensity of the external excitation is strong
nough. If the mean time to capsize is long enough, the dy-
amic system can be regarded as a highly reliable system and
he corresponding roll response reaches stationary in an ap-
roximate sense [6] . Therefore, the practical time-variant up-
rossing rate v + ( ζ ; t ) can be approximated as a time-invariant
arameter v + ( ζ ) at a suitable reference point in time. 

The straightforward Monte Carlo simulation can serve as
 validation for the upcrossing rate obtained by the 4D PI
ethod and the Rice formula ( 26 ). For a stationary sea state,

he appropriate sample mean value of the upcrossing rate can
e obtained from the time histories of the roll angle process:

ˆ  + (ζ ) = 

∑ k 
i=1 n 

+ 

i (ζ ; T i ) ∑ k 
i=1 T i 

(28) 

here n 

+ 

i (ζ ; T i ) denotes the counted number of upcrossings
or the level ζ within a time duration of length T i for simu-
ated time history no. i . The practical simulation time T i is not
xed for each simulation, but it is equal to the predetermined
imulation time T if no capsizing occurs. Otherwise, it is the
alue of termination time t i for each case where capsizing oc-
urs. Moreover, the number of simulations, k , e.g. k = 1000–
000, is selected according to the values of upcrossing rates
n the tail region and the length of the predetermined simu-
ation time T . Usually, low upcrossing rates and short time
eriods T correspond to a large simulation number k . 

A fair approximation of the 95% confidence interval,
I 0.95 , can be expressed as [15] : 

 I 0. 95 (ζ ) = 

(
ˆ v + (ζ ) − 1 . 96 ̂

 s (ζ ) √ 

k 
, ˆ v + (ζ ) + 1 . 96 ̂

 s (ζ ) √ 

k 

)
(29) 

here the empirical standard deviation ˆ s (ξ ) is given as: 

ˆ  (ζ ) 2 = 

1 

k − 1 

k ∑ 

i=1 

(
n 

+ 

i (ζ ; T i ) 

T i 
− ˆ v + (ζ ) 

)2 

(30) 

For the selected sea state, the upcrossing rate calculated
y application of the 4D PI method and the empirical es-
imation of the upcrossing rate ν+ (ζ ) as well as the 95%
onfidence interval obtained by Monte Carlo simulation are
hown in Fig. 3 . In the Monte Carlo simulation, long time
omain simulations are needed to obtain upcrossing rates for
igh response levels. For this case, the simulation number k
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Fig. 3. Upcrossing rates for the vessel without initial heeling obtained by 
the 4D PI method and Monte Carlo simulation (MCS) for the sea state with 
H s = 4.0 m, and T p = 11.0 s. 

Fig. 4. Influence of the heeling angle on the upcrossing rate, for the sea state 
with H s = 4.0 m, and T p = 11.0 s. 
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Fig. 5. Influence of the heeling angle on the distribution of high level re- 
sponses for the sea state with H s = 4.0 m, T p = 11.0 s, and exposure time 
T = 1 h . 
is selected to be 3000 and the predetermined simulation time
T is 1.0 × 10 

5 s. 
The mean wind action results in an initial (or permanent)

heeling angle θ s and the corresponding mean wind heeling
level is shown in Fig. 1 . Fig. 4 presents its influence on the
upcrossing rate. It can be readily seen that the existence of
heeling angle increases the upcrossing rate, which indicates
that the vessel with heeling angle would cross the high re-
sponse levels more frequently than the vessel in the upright
condition. Moreover, Figs. 3 and 4 demonstrate that the 4D
PI technique yields accurate and reliable calculation of the
upcrossing rates, even in the high roll response region. 

For high response levels, let �( t ) = max{ θ ( t ): 0 ≤ t ≤ T } de-
note the largest value of the roll angle process θ ( t ) over the
ime interval of length T [2] . If the random number of up-
rossing in an arbitrary time interval of length T is Poisson
istributed, the cumulative distribution function (CDF) of the
xtreme value �( t ) for the exposure period T can be given in
erms of the mean upcrossing rate by the following relation
or a stationary short-term sea state: 

 �(T ) (ζ ) = exp 

(
−

∫ T 

0 
v + (ζ ; t ) dt 

)
≈ exp 

{−v + (ζ ) · T 
}

(31)

Moreover, the empirical estimation of the exceedance prob-
bility obtained by Monte Carlo simulation is given as: 

 MC (ζ , T ) = 1 − F MC (ζ , T ) (32)

here F MC 

( ξ , T ) is the empirical CDF of the extreme value
( t ) over the time interval of length T , which can be eval-

ated in terms of simulated maximum roll angles ranked in
scending order. Furthermore, for Monte Carlo simulation,
he exceedance probability for the high-level responses con-
erges toward a normal distribution for a large number of
ealizations, N t and the 95% CI of the exceedance probability
uring the exposure time T can be given as: 

 I 0. 95 ( P MC ) = 

( 

P MC − 1 . 96 

√ 

P MC · (1 − P MC ) 

N t 
, P MC 

+ 1 . 96 

√ 

P MC · (1 − P MC ) 

N t 

) 

(33)

Correspondingly, the influence of the initial heeling angle
n the CDF is shown in Fig. 5 and Figs. 6 –8 present the
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Fig. 6. Exceedance probability of high level responses for the vessel without 
initial heeling, exposure time T = 1 h. 

Fig. 7. Exceedance probability of high level responses for the vessel with 
2.5 ° initial heeling angle, exposure time T = 1 h. 
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Fig. 8. Exceedance probability of high level responses for the vessel with 
5.0 ° initial heeling angle, exposure time T = 1 h. 
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ffect of the initial heeling angle on the exceedance probabil-
ty of high level response. The empirical CDFs and empirical
xceedance probabilities as well as the confidence intervals
btained by the Monte Carlo simulation results are also plot-
ed in these figures in order to verify the results obtained by
qs. (31) and ( 32 ). The number of realizations, N t , for each
ase is selected to be 5000 and the reference exposure period,
 is 1 h for each realization [1] . 

The comparisons in Figs. 5 –8 demonstrate a quantitative
easure of the common sense that the heeling angle deteri-

rates the vessel’s stability. A small heeling angle obviously
nfluence the reliability of the vessel illustrates that ship sta-
ility in random beam seas is sensitive to the existence of
he heeling angle. In addition, it is seen in Fig. 5 that the
ccuracy of the Poisson estimate is satisfactory on the whole,
ut the accuracy declines as the roll response increases. This
endency can also be observed in Figs. 6–8 , e.g. the Poisson
ssumption provide excellent estimations for the case without
eeling angle and for the case with 2.5 ° heeling angle. How-
ver, in Fig. 8 , when the heeling angle increases to 5 °, the
oisson estimate slightly overestimates the exceedance prob-
bilities of a part of the high-response levels. 

Generally, the simple Poisson assumption is widely used
o predict the failure probability of structures subjected to
andom excitations. For a large ship, the exceedance proba-
ility of a high-response level is important since a number of
ther damages will occur at large angles. However, when the
esponse increases, the accuracy of the Poisson estimate grad-
ally declines because the assumption of Poisson distributed
pcrossing tend to be less invalid [4] . On the other hand, the
oisson estimate can take advantage of the reliable response
tatistics obtained by the 4D PI method. Its simplicity and
ccuracy, as presented in Figs. 5 – 8 , is attractive for practical
pplications to evaluate the exceedance probabilities of large
r extreme roll angles, but except for very serious response.
or the selected mean wind speed U m 

= 26 m/s, it results in a
ermanent heeling angle θ s = 1.54 ° and the Poisson assump-
ion can provide satisfactory estimations. 

. Conclusions 

In this work, the 4D PI method, based on the Markov
roperty of the dynamic system, was introduced to analyze
he stochastic roll response and the reliability for a vessel
olling in random beam seas and beam wind. Based on the
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results and discussions mentioned above, several conclusions
can be drawn as follows. 

For the selected vessel model, the influence of the fluctu-
ating wind moment on the stochastic roll response can be ne-
glected because the spectrum of the fluctuating wind moment
is peaked in the low-frequency region, which is far away from
the critical frequency region near the natural roll frequency.
But for the vessels with very large natural roll periods (e.g.
30 s), the effect of fluctuating wind action could be a possible
critical problem. 

The mean wind action significantly influences the stochas-
tic roll response and deteriorates the ship stability in random
waves. The good agreements of the results obtained by the
proposed numerical results and the Monte Carlo simulation
results demonstrate the reliability of the 4D PI method as
well as the rationality of the Poisson distributed approxima-
tion. 

Furthermore, the permanent heeling moment can also be
caused by transverse displacements of masses or by the lateral
pull in the towing work, etc. [16] . Therefore, current study
with respect to the influence of the mean wind action as well
as the method used in this study is also applicable for other
cases with initial heeling moments. 
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